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Abstract—Clinical applications, such as image-guided surgery
and noninvasive diagnosis, rely heavily on multi-modal images.
Medical image fusion plays a central role by integrating infor-
mation from multiple sources into a single, more understandable
output. We propose a real-time image fusion method using pre-
trained neural networks to generate a single image containing
features from multi-modal sources. The images are merged using
a novel strategy based on deep feature maps extracted from a
convolutional neural network. These feature maps are compared
to generate fusion weights that drive the multi-modal image
fusion process. Our method is not limited to the fusion of two
images, it can be applied to any number of input sources. We
validate the effectiveness of our proposed method on multiple
medical fusion categories. The experimental results demonstrate
that our technique achieves state-of-the-art performance in both
visual quality, objective assessment, and runtime efficiency.

Index Terms—Image fusion, multi-modal medical fusion, neu-
ral networks, real time

I. INTRODUCTION

Due to diverse imaging technologies, medical devices can
capture different organ and tissue characteristics. For example,
computed tomography (CT) captures dense structures and
bones while magnetic resonance imaging (MRI) detects soft
tissues. Thanks to these multi-modal visualizations, physicians
can produce accurate and reliable diagnosis. However, sequen-
tial analysis of multi-modal images is inconvenient. Multi-
modal image fusion allows physicians to visualize comple-
mentary data in a single image. The composite results are thus
useful in clinical applications such as image-guided surgery,
radiotherapy, patient diagnosis and treatment planning [1]–[3].

A variety of medical image fusion models have been pro-
posed [3]–[12] over the past decade. Most of these methods
consist of three steps, namely decomposition, fusion, and
reconstruction. As such, the two main aspects affecting the
fusion quality are the image transform and the fusion rule,
i.e., a pixel level decision map. Typically, the map is generated
via an activity level measurement, followed by a weight map
assignment based on it. Due to the commonly used image
decompositions [8], [13], [14], activity level measurements are
not robust to noise, mis-registrations, nor the dynamic range
of the sources. It is still difficult to design an activity level
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function that accounts for all the fusion requirements without
limiting the algorithm performance. We address this by using
convolutional neural networks (CNN) to design a robust and
efficient activity level measurement and weight map generation
model.

Recently, deep networks have been employed in multiple fu-
sion problems such as multi-focus fusion [15], multi-exposure
fusion [16], and visible and infrared fusion [17]. In fact, neural
networks can be considered as feature extractors themselves,
where intermediate maps represent salient features that can be
used to reconstruct a fused image. However, although deep
learning methods often achieve better performance than their
classical counterparts, they still have major drawbacks. For
instance, deep networks often generalize based on the datasets
they are trained on, e.g., a network trained for multi-focus
image fusion will only be suitable for that task. Additionally,
these methods require large specialized datasets for training.
Finally, neural networks, and especially convolutional neural
networks (CNN), require large amounts of memory and are
computationally expensive both in time and energy.

In contrast, our method is based on pre-trained neural net-
works. Consequently, it requires neither a specific dataset for
training nor a particular network architecture. As illustrated in
Fig. 1, the network is fed source images, and their intermediate
layer representations are used to generate activity levels, which
are compared to generate fusion weight maps. The weight
maps are then refined and used to construct the fused image.
We study the effect of layer depth on the quality of the
fusion, and demonstrate that early layers are sufficient to
obtain high quality fusion. This is an order of magnitude faster
and more memory efficient than state-of-the-art techniques.
Finally, our method is modality agnostic, i.e., it performs
well on different input sources. We show its applicability
to computed tomography (CT), magnetic resonance imaging
(MRI), positron emission tomography (PET), and single pho-
ton emission computed tomography (SPECT). We also show
bi- and tri-modal image fusion.

Our main contribution is a novel technique to integrate pre-
trained neural networks in the image fusion task. Our method
shows better performance than current state-of-the-art tech-
niques and runs in real time without any specialized hardware.
The low computational requirements make it very beneficial
for continuous monitoring systems, and for deployment on
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Fig. 1. Schematic diagram of the proposed image fusion algorithm.

limited hardware architectures.

II. RELATED WORK

Image fusion is a vast field that covers an array of algorithms
and applications. We first cover classical fusion approaches,
and then focus on literature related to generating fusion images
using neural networks or deep representations obtained via
convolutional layers.

Classical fusion algorithms use multi-scale transforms
(MST) to obtain perceptually good results. Frequently used
MSTs include pyramids [9], [13], wavelets [8], [18], filters
(GFF [19]), and geometrical transforms like contourlets and
shearlets [5]–[7], [14]. Another popular approach for modeling
images is sparse representation [20], [21]. Images are encoded
as a sparse linear combination of samples representing salient
features. This encoding is then used to fuse the source images
(LP SR [22]). All these methods enforce a specific relation
between inputs and outputs, i.e., they operate by a rule which
fits a limited set of predefined image priors. Our approach is
based on neural networks which learn by example. By training
on a large amount of examples, networks are able to construct
a more complete understanding of image priors, and as such
generalize better on image fusion tasks.

Pulse-coupled neural networks (PCNN) are another set of
models that are commonly used in image fusion. They are
inspired by the cat’s visual cortex (NSCT PCNN [14] and
NSST PAPCNN [12]). Unlike deep learning architectures,
these models are only two-dimensional, with each neuron
corresponding to a single pixel in an image. They also operate
without prior training, i.e., they do not form a statistical model
of natural images. Unlike them, CNNs are typically trained on
large datasets of images, allowing them to model and detect
salient features of images, which we leverage in our method
to obtain better fusion rules than methods based on PCNNs.

The earliest work involving neural networks poses multi-
focus fusion as a classification task [23]. Three focus measures
are computed as input features, and a shallow network is

trained to output the weight maps. Due to the architecture of
the network, the images are fed in patches, resulting in border
issues at patch boundaries. In our work, we use CNN models.
Thus, the source images are directly fed to the network. This
improves the computational efficiency of the method, and the
fused output does not suffer from patch border artifacts.

The authors in [21] propose a fusion method based on con-
volutional sparse representation. This method, while different
from deep learning techniques, still uses convolutional features
to generate fusion weights. Similarly, convolutional neural net-
works have been trained on image patches to generate decision
maps for multi-focus [15] and medical image fusion [10].
Additionally, DeepFuse [16] uses a two-branch network to
fuse extreme exposure image pairs, obtaining state-of-the-art
performance. In these approaches, the network predicts the
weights for the fusion, but requires training data and is only
suitable for a specific fusion task. In contrast, our method
requires no training which alleviates the necessity of collecting
data. Moreover, it generalizes well to any fusion problem. We
use a single pre-trained network as a feature extractor for any
multi-modal image fusion.

Finally and closer to our work, in [17], images are
decomposed into base and detail content, and a neural network
is used to fuse the detail contents while the base parts
are averaged. Similarly to these methods, we leverage the
ability of deep features to represent salient regions in images.
However, contrary to them, we do not run any time consuming
optimization scheme, and are able to obtain fused images in
real time (> 150fps on 256× 256 images).

III. METHOD

We propose a novel fusion strategy using convolutional
neural networks to extract deep features and generate weight
maps. In this section, we detail how we obtain the weight
maps, and construct the fused image.

Suppose that there are K pre-registered source images
denoted as Ik|k ∈ {1, 2, · · · ,K}. Additionally, suppose there



is a pre-trained convolutional neural network with L layers,
with Cl output channels per layer l. We denote f c,lk as the
c-th feature map of the k-th image extracted at the l-th layer
of the network (taken after ReLU operation), the feature map
is computed as

f lk = max(0, Fl(Ik)) (1)

where Fl(.) is the application of the network layers onto the
input image up to layer l. The max(0, .) function denotes the
ReLU operation.

For every feature map, we denote f̂ lk as the l1-norm com-
puted over the Cl channels of the feature maps of layer l as
follows

f̂ lk =

Cl∑
c=0

||f c,lk ||1 (2)

This constitutes a measure of the activity level corresponding
to the input image at layer l.

The feature maps are extracted for L layers , so we obtain,
per image k, a set of features maps F̂k = {f̂ lk|l ∈ L}. For
every layer l, the K feature maps can be used to generate k
weight maps to indicate the amount of contribution of each
image at a specific pixel. For our method, we use the softmax
operator to generate said maps as follows

W l
k =

ef̂
l
k∑K

j=1 e
f̂ l
j

(3)

where e(.) is the exponentiation with base e.
In order to account for small mis-registrations, and remove

undesirable artifacts around the edges of both modalities,
we apply a Gaussian smoothing to the weight maps with
σ = 0.01

√
w2 + h2, where w and h are the spatial dimensions

of the weight maps. Fig. 1 illustrates the process of taking two
source images, extracting their representative feature maps,
generating the fusion weights according to their activation
levels at layer l, smoothing, and finally fusing them.

At layer l, we have a set of weights W l = {W l
k|k ∈

{1, 2, · · · ,K}}. Using these weight maps, the image fusion
at layer l is computed as

I lF =

K∑
k=1

W l
kIk (4)

In order to reconstruct the fusion from multiple layers, we
choose the maximum pixel from the multi-layer fusions

IF = max
l∈L

[I lF ] (5)

Finally, IF is clipped to the appropriate range to remove
any out of range values. If desired, a tone mapping function
could be applied.

IV. EXPERIMENTS

First, we explore the quality of the medical image fusion
with respect to the layer l at which the feature maps are
extracted, and the impact of deeper layers on the fusion run

time. We then show that our method is competitive with state-
of-the-art medical fusion techniques and an order of magnitude
faster than prior methods. And last, we show an example of
tri-modal fusion.

A. Experimental settings

In order to conduct our experiments, we collect multi-modal
medical images from the Whole Brain Atlas [24]. It is a
benchmark database containing CT, MRI, PET and SPECT
images for normal and abnormal brain structures. All the
images in the dataset are pre-registered.

We collect data for four multi-modal fusion tasks. In total,
we assemble 97 images for MRI-CT fusion, 24 for T1-T2
weighted MRI fusion, 144 for MRI-PET, and 119 for MRI-
SPECT corresponding to different brain diseases. The fusion
of these modalities is interesting because they each capture
different complementary tissue properties. As discussed previ-
ously, CT is sensitive to dense structures and bones while MRI
captures softer organ tissues. T1 and T2 are relaxation times
that characterize tissue, and thus capture different properties
of the same substance under MRI. A PET scan contains
information about the activity of the brain. As such it allows
physicians to view how it is working and detect operational
abnormalities. Finally, SPECT detects blood flow changes in
the brain, and is often used to help doctors pinpoint the
regions in the brain that are causing epileptic seizures. As
both PET and SPECT capture activity information, they are
best complemented with an MRI image detailing the structure
of the brain where the biological processes take place.

B. Metrics

In our experiments, five commonly used objective fusion
metrics are adopted to conduct quantitative evaluations for
medical image fusion [10], [25]. They are entropy (EN), mu-
tual information (MI), structural similarity index (SSIM) [26],
Qabf [27], and Nabf [28]. EN reflects the amount of informa-
tion present in the fused image while MI estimates the amount
of information transferred from the input images into the fused
image. SSIM measures how well the structural information of
input images is preserved in the fusion. Qabf measures the
success of edge information transferred from the sources to
the fused images. Finally, Nabf measures the level of noise or
artifacts added to the fused image that are not present in the
source images. A lower value indicates that the fused image
contains less artifacts and noise. For all these metrics, a higher
value suggests a better performance, except Nabf where a
lower value indicates a better result.

C. Depth of feature maps

A deep neural network consists of multiple layers, and it
is interesting for our application to understand the effect of
depth on the output fusion. To that end, we compute the image
fusion at multiple depth levels of the network and compare
them. For this experiment, we use a VGG-16 [29] network
pre-trained for classification on ImageNet [30]. VGG contains
multiple pooling layers which decrease the resolution of the
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Fig. 2. MRI-CT Fusion weights and results comparison with respect to feature depth. The weights W l
1 shown correspond to the MRI image, the weights

corresponding to the CT image are simply W l
2 = 1−W l

1.

TABLE I
FUSION QUALITY WITH RESPECT TO FEATURE DEPTH

Metric I1F I2F I3F I4F I5F

EN 4.49 4.36 4.32 4.33 4.28
MI 8.98 8.73 8.71 8.65 8.66
SSIM 0.73 0.72 0.71 0.71 0.70
Qabf 0.68 0.67 0.68 0.66 0.66
Nabf 0.02 0.02 0.03 0.05 0.08

Time (sec/image) 0.006 0.007 0.007 0.007 0.008

feature maps. As such, the width and height of the weight
maps depend on the layer l over which they were computed.
In order to use deeper layers, we need to upsample their feature
maps to the size of the original image. VGG contains 5 large
convolutional blocks, so we denote IbF the fused image taken at
layers up to block b ∈ {1, · · · , 5} using the method described
in the previous section.

Table I shows the image fusion quality with respect to the
depth of the features considered in the weight computation.
The results shown are computed on the fusion of the 97
MRI-CT image pairs. As we consider deeper features from
the network, EN, MI, and SSIM decrease, while the amount
of fusion noise increases. This means images reconstructed
from deeper feature maps contain more information that does
not exist in any of the source images compared to those
reconstructed using shallower feature maps. Finally, the chosen
depth has very little impact on the run time efficiency.

Finally, Fig. 2 shows the progressive weight maps and
fusion results as the depth l increases. Due to the lower reso-
lution of the deeper layers, the weight maps contain unwanted
upsampling artifacts. These artifacts lower the quality of the

fusion by introducing a higher amount of undesirable noise and
distorting the intensity levels. For instance, the global contrast
of the fusion decreases as the considered depth l increases,
making it more difficult to perceive edges. These results show
that the shallow layers of a deep neural network are sufficient
to build a high quality fusion method.

D. Comparison to other image fusion methods

In this section, we compare our proposed method with
other approaches on visual quality, objective assessment, and
computational efficiency.

We compare against generic and medical image fusion
methods on the four aforementioned modalities: MRI-CT, T1-
T2, MRI-PET, and MRI-SPECT. The MRI and CT signals
contain single channel images, while PET and SPECT contain
false colors that are generated using a pre-defined color
mapping. The MRI-CT images correspond to different brain
diseases, mainly acute stroke, embolic infarctions, and fatal
stroke. The T1-T2 images correspond to scans of a patient
suffering a cerebral hemorrhage. MRI-PET images correspond
to glioma, and the MRI-SPECT set contains images from five
patients having subacute stroke, cavernous angioma, vascular
dementia, AIDS, and vascular malformation.

For the color image fusion with MRI, the color image is first
transformed into YUV space from the original RGB. Then, the
Y component is fused with the grayscale MRI image. The final
fused image is reconstructed by converting the intermediate
fusion with the U and V components back to RGB.

The methods we compare against are GFF [19], NSCT [7],
NSCT PCNN [14], LP SR [22], LIU CNN [10], NSST
PAPCNN [12], and LI CNN [17]. GFF is based on a base and
detail decomposition with guided filters to generate weights.
NSCT and NSCT PCNN all use the non-subsampled con-
tourlet transform to decompose the images into low and high



Source: MRI Source: CT GFF [19] NSCT [7] NSCT PCNN [14]

LP SR [22] LIU CNN [10] NSST PAPCNN [12] LI CNN [17] Ours

Source: MRI T1 Source: MRI T2 GFF [19] NSCT [7] NSCT PCNN [14]

LP SR [22] LIU CNN [10] NSST PAPCNN [12] LI CNN [17] Ours
Fig. 3. Performance comparison of different methods on grayscale fusion. The first pair (MRI-CT) is taken from the acute stroke set (slice 11) and the second
(T1-T2) from the cerebral hemorrhage set (slice 18). Better viewed on screen.

frequencies, and apply different fusion rules depending on the
frequency. LP SR uses Laplacian pyramids to decompose the
images and applies sparse representation for low frequency
fusion and maximum selection rule for high frequency fusion.
LIU CNN employs Siamese Neural Networks [31] to predict
the fusion weights with input images in the spatial domain.
NSST PAPCNN uses non-subsampled shearlet transform for
image decomposition, with an energy based fusion for low
frequencies, and an adaptive PCNN for high frequencies.
Finally, LI CNN decomposes images using Tikhonov filters.
They use a neural network to determine the fusion weights
for high frequencies, and simply average the low frequencies.

They present their work on infrared and visible fusion, but
we include this approach because it is closest to ours. The
parameters of all these methods are set to the default values
from the provided code. Finally, for our method, we use
a VGG-16 network pre-trained on ImageNet, with weights
computed at layer l = 1.

1) Qualitative evaluation: Fig. 3 shows two pairs of im-
ages corresponding to grayscale fusion, MRI-CT and T1-T2,
respectively. Fig. 4 shows two pairs corresponding to color
fusion, MRI-PET and MRI-SPECT, respectively.

GFF, NSCT and NSCT PAPCNN are not able to capture
complementary information in all the regions, which is re-



Source: MRI Source: PET GFF [19] NSCT [7] NSCT PCNN [14]

LP SR [22] LIU CNN [10] NSST PAPCNN [12] LI CNN [17] Ours

Source: MRI Source: SPECT GFF [19] NSCT [7] NSCT PCNN [14]

LP SR [22] LIU CNN [10] NSST PAPCNN [12] LI CNN [17] Ours
Fig. 4. Performance comparison of different methods on color fusion. The first pair (MRI-PET) is taken from the glioma set (slice 43) and the second
(MRI-SPECT) from the cavernous angioma set (slice 14). Better viewed on screen.

flected in the stark contrast inside regions that should have
similar intensities. This can be seen for GFF in MRI-CT fusion
at the edges, which exhibit a single intensity in both sources
but present different levels in the fusion. Similar artifacts can
be spotted for NSCT in MRI-CT and MRI-SPECT fusion and
for NSCT PAPCNN in T1-T2 fusion. In contrast, since the
networks we use have been trained on large datasets with
images having various intensity levels, our proposed method
respects the intensity differences inside and between salient
regions leading to a more intensity consistent fusion that is
easier to interpret.

NSCT PCNN and NSCT PAPCNN exhibit blurry and noisy

fusion results across all the modalities presented. This is
mostly noticeable in the T1-T2 fusion. Since our method
operates in the spatial domain, it reduces the amount of
artifacts that are produced due to directional decompositions.

Finally, LP SR and LIU CNN generate weights that are
highly biased towards the highest intensity signal. This results
in overexposed fusions, where darker details from sources do
not appear in the fusion. For example, in the MRI-SPECT
fusion, the dark blue details are more difficult to spot in
LP SR and LIU CNN fusions. LI CNN obtains low contrast
results as it only averages the low frequencies. In comparison,
our method better represents the edges between neighboring



TABLE II
OBJECTIVE ASSESSMENT OF DIFFERENT METHODS ON FOUR CATEGORIES OF MULTI-MODAL MEDICAL IMAGE FUSION.

Modality Metric GFF NSCT NSCT
PCNN LP SR LIU CNN NSST

PAPCNN LI CNN Ours

MRI
CT

EN 3.57 3.92 3.70 3.20 3.44 3.75 3.41 4.49
MI 7.13 7.85 7.40 6.39 6.88 7.50 6.83 8.98
SSIM 0.71 0.60 0.59 0.71 0.68 0.69 0.72 0.73
Qabf 0.73 0.52 0.48 0.71 0.66 0.66 0.67 0.68
Nabf 0.06 0.23 0.17 0.07 0.07 0.14 0.02 0.02

MRT1
MRT2

EN 3.60 3.81 3.74 3.70 3.88 4.23 3.56 4.68
MI 7.19 7.61 7.48 7.40 7.76 8.47 7.13 9.35
SSIM 0.83 0.74 0.72 0.83 0.77 0.76 0.85 0.87
Qabf 0.76 0.54 0.50 0.76 0.69 0.66 0.70 0.71
Nabf 0.04 0.14 0.11 0.05 0.06 0.12 0.01 0.004

MRI
PET

EN 2.11 2.26 2.30 2.14 2.11 2.47 2.19 2.61
MI 4.22 4.51 4.59 4.27 4.23 4.95 4.38 5.21
SSIM 0.83 0.80 0.71 0.82 0.82 0.77 0.83 0.85
Qabf 0.84 0.77 0.68 0.83 0.83 0.70 0.82 0.85
Nabf 0.07 0.09 0.06 0.08 0.07 0.11 0.02 0.01

MRI
SPECT

EN 3.15 3.18 3.06 3.14 3.14 3.28 3.18 4.27
MI 6.31 6.36 6.12 6.28 6.28 6.57 6.35 8.54
SSIM 0.65 0.60 0.39 0.67 0.65 0.60 0.66 0.71
Qabf 0.65 0.53 0.32 0.66 0.65 0.60 0.65 0.68
Nabf 0.13 0.14 0.07 0.13 0.13 0.16 0.02 0.01

TABLE III
RUNNING TIME OF DIFFERENT METHODS ON TWO SOURCE IMAGES OF SIZE 256× 256 (IN SECONDS)

GFF NSCT NSCT
PCNN LP SR LIU CNN NSST

PAPCNN LI CNN Ours
(CPU)

Ours
(GPU)

Time 0.05 3.49 0.46 0.04 13.12 6.92 1.65 0.03 0.006
Std σ 0.02 1.90 0.10 0.008 1.91 2.46 0.22 0.003 5e-4

regions without introducing any noise or artifacts.

E. Quantitative evaluation
To quantitatively evaluate the performance of these methods

against ours, we adopt the previously discussed objective
metrics: EN, MI, SSIM, Qabf , and Nabf .

Table II shows the performance of different methods against
ours on the four tested modalities. The experiments show
that our method achieves better performance in all the cases,
except for Qabf for MRI-CT and T1-T2 where it still shows
competitive results relative to the other methods.

Additionally, the objective metrics reflect the qualitative
results. For example, NSCT PCNN and NSCT PAPCNN show
high Nabf values, caused by the blur and noise artifacts present
in these fusions. Conversely, our methods achieves near zero
noise levels on all modalities. Similarly, LP SR and LIU CNN
have lower MI values, reflected by the overexposed fusions
hiding detail information. Unlike them, the fusion weights
generated by our technique have a higher sensitivity to the
presence of information in a pixel than its absolute value.

Finally, Table III shows the average run time of each method
on an image taken from the dataset. The average was computed

on all 384 images. The experiments were run on a Intel Core
i7-7700HQ CPU (2.8GHz), and a GeForce GTX 1050 GPU
(2Gb). Our method has the fastest run time, even when run on
the CPU. With the use of a GPU, our fusion technique is at
least one order of magnitude faster than any other method.
Note that for LIU CNN [10], the authors present a faster
implementation in C++, where they report an average speed of
0.08 seconds per image. However, only their MATLAB code
was published. In both cases, our method is significantly faster
and more suitable for real time monitoring systems.

F. Tri-modal fusion
Most fusion methods are designed for bi-modal image

fusion, and usually operate on more sources by successive fu-
sions, which is not optimal because fusion algorithms assume
image priors that might not be present in the intermediate
fusion results. Additionally, neural network based approaches
such as LIU CNN [10] can only fuse two images from the
image space they were trained on. Successive fusions lead to
multiple artifacts as fused images do not correspond to any
input space. However, our method can inherently fuse any
number K ≥ 2 of images, see Eq. 4. Fig. 5 shows such an



Source: MRI Source: CT

Source: PET Fusion

Fig. 5. Tri-modal fusion of MRI, CT, and PET slices. Best viewed on screen.

example, the skull bones present in the CT scan are noticeable
in the fusion, alongside the color information from PET and
the tissue information from the MRI. Note that the addition of
a modality does not affect the processing time of the neural
network because the feature maps are extracted in parallel.

V. CONCLUSION

We present a novel medical image fusion algorithm based
on pre-trained neural networks. Unlike typical neural network
based techniques, our method requires no prior training on the
image modalities and generalizes well to cover different fusion
modalities. We leverage the ability of trained networks to
detect salient regions in images and extract deep feature maps
that describe these regions. By comparing these feature maps,
we generate fusion weights to combine the source images.

We show experimentally the robustness of our method to
network depth levels. Moreover, we show that our method
creates extremely fast high-quality zero-noise fusion results.
We also demonstrate its applicability to bi- and tri-modal
image fusion. Finally, our method is a lightweight high-quality
technique with promising applications in real time systems,
and on low-energy hardware.
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