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Abstract -Because existing public transportation 

infrastructure cannot be adapted in a timely manner to address 
the daunting traffic and parking congestion in urban 
environments, researchers are investigating social solutions, 

such as carpooling, where a driver and one or more passengers 
having semi-common routes share a private vehicle. Although 
many carpooling systems have been proposed, most of them 
lack various levels of automation, functionality, practicality, 

and solution quality. While Genetic Algorithms (GAs) have 
been successfully adopted for solving combinatorial 
optimization problems, their use is highly uncommon in 
carpooling problems. Motivated to propose a solution for the 

many to many carpooling scenario, we present in this paper a 
GA with a customized fitness function that searches for the 
solution with minimal travel distance, efficient ride matching, 
timely arrival, and maximum fairness while taking into account 

the riding preferences of the carpoolers. The computational 
results and simulations based on real user data show the merits 
of the proposed method and motivate follow up research. 

Keywords- carpooling; genetic algorithm; intelligent 
transportation 

I. INTRODUCTION 

The constant population and economical growth has 
caused an enormous increase in the number of private cars in 
cities worldwide. This phenomenon has lead to traffic 
congestions, parking problems, inordinate fuel consumption, 
and excessive pollution. While the average capacity in a car 
is 4 passengers, cars are often observed with one rider. In fact 
78% of Americans drive alone to work [1]. Because existing 
public transportation systems cannot be adapted in a timely 
manner or without major capital investments to address the 
growing needs of populations, developing social solutions, 
such as carpooling, where a driver and one or more 
passengers having totally or partly common routes share a 
private vehicle would be a green as well as a cost effective 
public solution to the daunting problem of traffic 
congestions. Carpooling stands out as an effective and social 
approach to exploit available transportation resources, i.e. , fill 
the empty seats in private vehicles. It allows people to share a 
ride for similar departure and destination locations. 

Figures 1, 2, and 3 show some relevant statistical trends 
compiled from [2]. Carpooling presents many benefits. From 
a financial perspective, it saves money on gas, parking fees, 
and wear and tear on the vehicle. With an increase in the 
adoption of carpooling, roads would become considerably 
less congested, and parking spots would become more 
available. Moreover, carpooling is very eco-friendly. If four 

people share one ride, the amount of fuel used to transport 
these individuals would roughly be reduced by a factor of 4. 
As can be seen in Fig. 3, highway and off-highway vehicles 
contribute to roughly 80% of the total carbon monoxide 
emissions. Additionally, there are also some social benefits to 
carpooling: less stress from riding, new friendships can be 
formed during ride time, and riders can read or snooze before 
reaching their destinations. Also, carpooling would enhance a 
sense of responsibility with those who tend to be late as they 
would become more dependable and accountable to the other 
commuters. Finally, leaving a car at home allows other 
family members to use it if the need arises. Unfortunately, 
with all the aforementioned benefits, carpoolers hardly 
constitute 15% out of all car drivers according to Fig. 2. 

Carpooling problems are classified as either a Daily 
Carpooling Problem (DCPP) or a Long-term Carpooling 
Problem (LTCPP) [3]. In the first class of problems, each day 
a set of users declare themselves as drivers for that day. The 
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challenge is to assign passengers to these drivers to ensure 
the lowest cost routes while respecting the users' schedules. 
The LTCPP is more challenging, as it is NP-Complete [4]. 
Users in this problem can be drivers on certain days and 
passengers on others. It is up for the system to effectively and 
fairly assign roles for the different days of carpooling. As 
before, the aim is to assign passengers to drivers and 
minimize the individual and total travel distance, while 
respecting users' schedules and maintaining overall fairness. 

Existing carpooling approaches rely on direct 
communication and arrangements between users who know 
each other or social websites designed for this purpose. With 
the aim of developing a more complete and practical 
carpooling system that mitigates traffic and parking 
congestions, this paper proposes an automated carpooling 
system based on a genetic algorithm (GA) with a customized 
fitness function. The system exploits all existing resources to 
ensure an easy and low-cost implementation. An application 
running on a 3GIGPS enabled smartphone provides 
communication between every subscriber and the main 
system server to offer functionalities such as user registration, 
ride scheduling and synchronization, and driver tracking. The 
system will ensure minimized travel distance, efficient ride 
matching, timely arrival of all users, and fairness in driver 
selection. 

The remaining of this paper is organized as follows: 
Section II presents related research, while Section III 
introduces the proposed model. Section IV describes the GA 
behind the scheduler, while Section V contains the 
computational and simulation results. Finally, Section VI 
concludes the paper and discusses future work. 

II. LITERATURE REVIEW 

Several research projects have tackled the carpooling 
problem and proposed various solutions. Starting with the 
work in [5], a distributed algorithm was proposed to map the 
driver having the earliest departure time to his destination and 
one or more passengers through a low cost path. The process 
is repeated until the pool of drivers becomes empty. While 
this algorithm is simple and adapts easily to newcomers, the 
solution is suboptimal, since the highest percentage of picked 
up passengers was reported to be 80%. Also, the fairness 
component was neglected. 

Another solution is based on the Dijkstra Algorithm [6]. 
The network of users is subdivided into small areas centered 

on a driver. A check is done on each passenger to see if a car 
with empty seats passes near him or her, and the assignment 
is performed incrementally. This solution has a fast runtime 
as compared to other carpooling solutions, but it is not 
globally optimal, and thus it will not be fair when considering 
incremental driven distances. 

The Adaptive Genetic Algorithm is another studied 
approach to solve the LTCPP with a little knowledge about 
the search space [7]. The GA chromosomes contain pools of 
several users, half of which are inserted using a greedy 
insertion method while the other half is randomly inserted. 
Drawbacks of this approach are the sacrifice of individual 
fairness to reach a near-optimal solution and the difficulty of 
adaptation to sudden changes in the system. Yet, another 
proposed solution is the clustering ant colony algorithm 
proposed in [8]. The constraints posed by the model are used 
as preferences (pheromones). The ants trace a path depending 
on these preferences and other attractiveness formulas. The 
algorithm is self-adaptive, includes preferences using 
numerical weights for each, and takes into account both time 
and distance costs. Near-optimal results can be achieved if 
the preferences and attractiveness formulas are suitable for 
the problem. As with most proposed approaches, the main 
disadvantage is lack of fairness. 

In addition to the above, a Lagrangian relaxation method 
was proposed based on a network flow technique that models 
the drivers and passengers' routes and schedules [9]. The 
complexity of the problem increases for large networks and 
number of variables plus constraints. Lagrangian relaxation 
finds a lower bound for the problem, which associates a great 
cost to every unmet constraint. The upper bound for the 
optimal solution ensures fairness for the drivers over time. 
Reported results show that this method is fast and efficient 
for small populations, but it degrades quickly as the 
population grows larger. Another drawback is the traveling 
cost that was reduced to monetary cost. 

In [10] and [11] the many-to-one scheme is discussed, 
and is easier to handle than the many-to-many problem that 
our work deals with. In [10], two methods based on two 
integer-programming formulations are proposed. The 
heuristic method yields a valid upper bound, which allows a 
feasible solution out of the Lagrangian lower bound solution. 
The exact method combines three lower bounds derived from 
the problem. In [11], two algorithms are presented: DCA 
solves the carpooling problem, while DCA-Branch and 
Bound globalizes the obtained solution. 

In [12], an integrated system is presented to organize the 
carpooling services using the web, GIS, and SMS. The 
carpooling problem itself is solved by an optimization 
algorithm, which solves the routing problem heuristically. 
Nevertheless, their definition of carpooling services is based 
on the idea that car-owners share rides to the same 
destination. Users without cars and multiple destinations are 
excluded in their carpooling services. 

One attempt to solve the LTCPP is based on saving 
functions [13]. Automatic and heuristic data processing 
routines were developed by the authors to allow efficient 
matching of rides for passengers and riders. According to the 
published results, this approach yields more than 50 percent 
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average savings in car traveled distances as compared to 
having no carpooling system. 

Another attempt at solving the LTCPP is the Multi
Matching System [14], where an optimized matching model 
was devised to intelligently match the passengers and the 
riders in the carpooling scheme. The core algorithm is based 
on Lagrangian relaxation with sub-gradient methods, and 
focuses on the fairness aspect of the carpooling problem by 
considering driving distances along with the frequency of 
being a driver when computing fairness. 

Another work that addressed fairness is that of [15], 
whose research introduces the fair share concept. Their 
algorithm determined the set of drivers among a group of 
carpooling participants for a particular day while attempting 
to secure fairness. In spite of the fact that they accounted for 
the fairness aspect in carpooling, they do not consider the 
distance traveled or the participants' schedules. 

Differently from the previously mentioned research, our 
work puts forward an efficient solution that builds on the 
strong points and improves the insufficiently addressed 
issues, such as fairness and user preferences, which are major 
criteria that affect the willingness of a user to participate in a 
carpooling system. Our solution allows for the participation 
of users who do not own cars and for the riders' preferences, 
which is another disregarded issue in previous works we do 
account for. Our solution insures that all participants secure a 
ride if the user requests are feasible, given the speed limits 
and available roads, and if the number of strictly-riders that 
participate in the system is low. 

III. PROPOSED MODEL 

This section introduces the server and client sides of the 
proposed system and provides the definition and the 
mathematical formulation necessary for the understanding of 
the LTCPP. As stated earlier, the model serves a scheme that 
allows for multiple origins and multiple destinations. Fig. 4 
illustrates the system architecture. 

Fig 4. Carpooling system architecture 

A. Server 

The server side of the system has two main 
functionalities: it runs the carpooling scheduler and stores all 
users and rides information. After collecting all the needed 

information from the different subscribers, the scheduler is 
daily allocated a six hours time window to run starting 
lOPM. We assume that no change in schedules occurs after 
this time. As discussed earlier, matching passengers and 
drivers is done and all the rides are determined for the 
upcoming day. The server then communicates all the rides to 
the respective drivers and passengers. As for the server 
database, implemented using SQLite, it stores information 
such as usernames and hashed passwords of the subscribers, 
users' profiles and preferences, and history of all rides. The 
database model is shown in Fig. 5. 

B. Client 

The client side consists of a smartphone application 
developed for the Android OS. It is the user's portal to the 
system. The application allows a new user to register 
providing all the required information such as full name, 
date of birth, gender, and car details. At login in, a main 
screen appears allowing a user to add rides or view her/his 
status. To add a ride, a user specifies the origin and 
destination by typing the name of the location or using the 
map to pinpoint it. Departure and arrival times are checked 
for feasibility against Google Maps before user's requests 
are sent to the server. Viewing the status of existing ride 
displays information about the ride timing and details about 
the driver and the route to be taken. The smartphone needs a 
3G connectivity to exchange data with the server, as well as 
a GPS capability to feed its coordinates into the system. 
Screenshots of the client application are shown in Fig. 6. 

C. Scheduler 

To ensure that all participants secure a ride, we assume 
that the number of cars on a certain day is enough to 
accommodate all the users who wish to carpool on that day. 
The model also necessitates that all participants provide their 
requested rides beforehand. This data includes the car 
capacity, the origin and destination of the user for each trip, 
the desired departure and arrival times, and personal 
preferences. These preferences include desired number of 
users to ride with, smoking permission, and a blacklist. In 
addition to the aforementioned user data, other metrics are 
needed to run the model. These are: the geographical 
coordinates of all the users and destinations, and the distance 
and travel time between every two nodes of the network. 

Our model can be viewed as a graph G = (PD U SR, A), 
where: 

.PD is the set of potential drivers who own cars and can 
participate as drivers. Each potential driver pdE PD is 
associated with an origin and a destination 

.SR is the set of strictly-riders who don't have cars and can 
only participate as passengers. Each strictly rider srE 
SR is associated with an origin and a destination 

.A = (arc(i, j) / i, j E (PD U SR)} is the set of arcs 
connecting any two different nodes from PD and SR. 
Each arc has a distance cost, and a time cost to be 
discussed later. 

An example ride is illustrated in Fig. 7 below. 
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usemame TEXT 
V origin_latitude DOUBLE 
� origin_longtitude DOUBLE 
.,) dHtinlltiorUatitude DOUBlE 
..;) destinatiorUongtitude OOUBLE 

arrivaUimewindow_start TIME 
..:) arrivaUimewindow_end TIME 

.. 

,) dep./lrture_timewindow_start TIME 
departure_timewindow_end TIME 

v d8ys_oCweek TEXT 
us�ame INT 
driverJicense_id INT 
ClIrJicense....Pla� TEXT 
car_model TEXT 
car_color TEXT 

� car_vearJll'OCluction YEAR 
car_eapaeity INT 

V fairness_counter INT 

Fig 5. Server database model 

Fig 6. Client aoolication screens 
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Defining a ride R of n users where n ::S Q, the vehicle's 
maximum capacity, each ride will have a driver pd and some 
passengers from the pool PD U SR. The driver starts the ride 
from hislher origin, picks up the passengers and drops them 
off to their destination(s), following the least cost path. The 
driver's and the passengers' departure and arrival times 
should be respected. The total cost for this ride will be the 
sum of the penalties incurred by every passenger, as will be 
further clarified in the following section. 

Given all the users' requirement and constraints, the 
model aims to solve the LTCPP by minimizing the number 
of operating cars, assigning the role of driver or passenger 
for every pd while conserving individual fairness, 
associating passengers with each vehicle, and finding the 
least cost route for every ride. The objective function, which 
helps achieve all these goals, is now discussed. 

2404 

Assuming the following variables: 

• OCi: origin coordinates of user i 
• DCi: destination coordinates of user i 
• TO(i): departure time window for user i range [tW(i)' 

tHO(i)] 
• TA(i): arrival time window for user i of range [tLA(i), 

tHA(i)] 
• Ci: fairness counter for user i (i E PD), incremented 

by one if i drives, and decremented by one if i does 
not drive 

• Qi: user i's maximum car capacity 

The evaluation of the quality of a ride R is based on the 
following four costs: 

1) Distance Cost 

• Dk: original distance driven for the driver of car k 

• Rj: waypoint j that car k has to pass through (a 
passenger's origin or destination) 

• Dk ': extra distance travelled by the driver when in 
pool k: 

• dk: ratio representing extra distance driven by the 
driver of pool k 



2) Time Cost 

feD) = d = Dk' k Dk 

• TA(i)
'
: the time of arrival of passenger i at his 

destination 

T�(;) = TD(;) + LjEk d(�, �+l)X T:vg x T X S 

(1) 

• Vavg being an average speed depending on the road 

type (e,g, 80kmJh for highways; 40kmJh for side 

roads) 

• T is the traffic condition that is affected by time of 

day, weather conditions, and special events 

• Ss is a security rounding factor to ensure timely 

arrival 

• f(TA(i)): arrival time penalty for passenger i 

I
Oif T�(;) E TA(;) 

f(T�(;))= ve�high (e,g,,�OOO)i,f T�(;) > THA(;) 

O,5If tLA(;) -5mm < TA(;) < tLA(;) 

3) Fairness Cost 

• fcC;): fairness penalty for user i 

f(CJ = K(C,+dk) (3) 

The fairness cost will account for the number of days 

and the amount of extra distance a user drives, 

4) Preferences Cost 

(2) 

• P i: set of preferences of user i with their relative 

priority, e,g" (Smoking, 1), (Only 3 passengers, 3), 

• Cost (preference) = {Oifmet 
priority if unmet 

The total preference cost is the summation of the 

preference costs of every user in the ride, The smaller the 

sum of these four costs, the higher the quality of the ride R. 
Hence, the objective function (OF) of the model is: 

OF=f(D)+ L;Ekf(T(i))+ f(C;)+ f(p) (5) 

IV, GENETIC ALGORITHM FOR CARPOOLING 

A, Overview 

GAs are adaptive search algorithms based on natural 

selection and survival of the fittest concept. A GA uses a 

population of individuals that undergoes solution selection 

under the influence of mutation and/or crossover operators, 

A fitness function is then used to evaluate individuals, and 

the survivability of each individual depends on its fitness, 

which fits well the car-pooling problem, A standard GA 

follows the workflow described in Fig, 8, 

The algorithm that is used in the system maintains the 

general structure of a GA but has been modified to improve 

convergence - which is sometimes an issue with standard 

GAs, GA convergence time is decreased due to an initial 

solution that roughly selects the early population instead of a 

Fig 8. Genetic Algorithm workflow 

randomly initialized one, Since one of the objectives is to 

minimize the number of drivers, and a population has a fixed 

number of drivers, the GA will be run in parallel over 

different population sizes, and each thread will be checked 

for survivability, 

B. Initial Solution 

The initial solution algorithm is a fairly simple algorithm 

that forms the starting point of the Gk The purpose is to 

decrease the GA convergence time, 

The main components of this algorithm are the arrival 

and departure times of the user and the extra distance driven 

by the driver. The initial solution will produce a set of 

solutions with a varied number of drivers for each solution, 

Initially, the drivers are randomly selected from PD, To 

assign passengers to vehicles, the algorithm performs three 

checks, The first one is the existence of at least one empty 

seat in the driver's car. The second is the evaluation of the 

ratio of the extra distance to be driven if the pickup takes 

place to the original distance to be driven without pickup, 

This ratio must be less than or equal to the average of the 

ratios computed for all pairs of drivers and unassigned 

passengers, The third check is if the pickup does not affect 

the driver's desired arrival time, If the last check does not 

succeed for the unassigned passengers, the offset from the 

driver's arrival time (time difference between the calculated 

time of arrival and the desired time of arrival as inputted by 

the user) is evaluated, It must be smaller or equal to the 

average of the offsets computed for all pairs of drivers and 

unassigned passengers, 

C Population Encoding 

Each chromosome will represent a ride and the genes 

will be the car occupants, The set of all chromosomes 

belonging to a thread represents a solution, i,e" the number 

of possible solutions examined is equal to the number of 

threads running in paralleL Within a thread and after every 

evolution, the genes will be swapped and/or mutated to 

obtain better rides, The number of drivers will then be bound 
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to the number of chromosomes in the population. A sample 
chromosome is shown in Fig. 9. 

Passenger Passenger Passenger Passenger 
1 2 3 4 

Fig 9. Sample chromosome 

A driver can be alone or share his/her car with one or 
more passengers, up to the maximum car capacity. The 
passengers, as listed in Fig. 8, are not in the order of pickup. 
Instead, the path is computed using the origin and 
destination coordinates of each user in the chromosome, and 
fitness evaluations are based on these calculations. 

D. Fitness and Operators 

The fitness of a chromosome should reflect the quality of 
the ride and its probability to be the final solution. 
Therefore, it should include measures about distance, travel 
time, and fairness. Hence, the fitness function (FE) is 
proposed to be: 

{50 if solo driver (6) FF = 100-(J(D)+ LiEJ(T(i»)+ f(C;) + f(P»)otherwise 

The FF attributes different weights to the four costs: 

1) f(D) ranges between 0 and 100; any value greater 
than 100 is clamped. 

2) f(T(i» has a value of 0 for a solution in the time 
window, and a value of 100 for exceeding the time limit. 
This gives the same importance for the time constraints 
and gives a very low fitness for a chromosome that 
doesn't respect constraints. 

3) f( Ci) is an exponent of a constant. The greater the 
number of days a user has to drive, the faster this 
function grows. 

4) f(P) is a small integer reflecting the priority that a 
user contributes to his preferences, e.g. , priority of 3 for 
prohibiting smoking. 

GA standard operators have also been modified and one 
was created as shown below to better suit the requirements 
of the car-pooling model: 

1) Crossover operator: given two chromosomes, two 
random indexes are computed to determine the crossover 
positions, and then swap the contents of these chromosomes. 
A check is performed to test if the first position is still a 
driver. The change will be committed only in case the 
resulting two chromosomes are better than their parents. Fig. 
10 illustrates this. 

2) Mutation operator: The mutation is actually a swap 
but between two different chromosomes because a user 
cannot be completely removed from the solution. Therefore, 
the mutation exchanges two genes between different 
chromosomes. 

RI AlB I 
1 Dover 2 1 E I F 1 

C 
1[0] 10�er'l AlB I F 1 

Cressever 
1 O�er 21 E I C 

II� 

Fig 10. Genetic Algorithm workflow Sample crossover operation 

As for the crossover operator, a check on the driver is 
made, and the same operations apply. Afterwards, the 
resulting two new chromosomes are evaluated against 
their older versions and if the sum of their new fitness is 
greater than their old one, the mutation is kept and the 
population is updated. This is illustrated in Fig. 11. 

lonver, 1 A I B lei 0 

EJ0D 
Fig. I I. Sample mutation operation between two chromosomes 

3) DriverSwitch operator: This operator was been added 
because the driver in the chromosome might not be the best 
driver to take the passengers of this ride, and one of the 
passengers could hold a higher fitness for this chromosome. 
This operator randomly switches the driver in a chromosome 
with another potential driver from the genes. If the resulting 
chromosome turns out to be better than the previous one, 
changes will be saved; otherwise, they will not be retained. 
Fig. 12 shows this "within chromosome swapping". 

Fig. 12. Sample DriverSwitch operation in a chromosome 

v. SIMULATION RESULTS 

In order to test the proposed model on real world 
scenarios, we performed multiple tests using real user data 
consisting of 119 students wishing to carpool to four 
different university campuses in Lebanon. To build the 
model and the solution algorithm, the Java language was 
used. The tests were performed on an Intel Core i7-3632QM 
CPU @ 2.20GHz and 6 GB of RAM in the environment of 
Microsoft Windows 8. 

A. Carpooling Survey 

The survey was answered by 150 adults, mostly Lebanese 
students including age range. The results showed that 
89.33% are willing to participate in an efficient carpooling 
system. Moreover, they are willing to pay an average of 
$2.38 per ride. Regarding preferences, 50.6% of the users 
wish to participate in non-smoking rides, 24% prefer to 
carpool with people of the same age group, and 75.86% 
desire a maximum car capacity of four individuals, including 
the driver. The survey results also showed that 55.33% do 
not mind leaving between 15 to 60 minutes prior to their 
planned departure time while 41.33% prefer not to exceed 
the 15 minutes time window. When asked about late arrivals, 
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45.33% of the users do not accept arriving late while 41.33% 

can tolerate up to 15 minutes in lateness. The preceding 
results are used to set different parameters in the algorithm, 
such as the relative priority of a user preference. 

B. Advantage of the Initial Solution Algorithm 

This test is run with the full population consisting of 119 

users and four destinations. Users are students who wished 
to commute in the morning to their respective universities, 
and have provided their actual schedules and constraints. 
Case A runs the proposed model as described in this paper. 
Case B runs the GA without initializing the population using 
the initial solution algorithm, i.e. using a standard GA for 
original solution encoding. The results are summarized in 
Table I, where: 

• Fitness: fitness score of the chromosome as shown in (6). 

• Increase in distance (%): % of extra driving distance 
incurred by the dri ver when picking up the passengers. 

• # Late arrivals: # of users who did not arrive on time. 

• Fairness: fairness score as calculated by the fairness cost 
function shown in (3). 

strictly local one. This concept is illustrated in Fig. 14, 

which is a representation of a ride taken from case A. The 
nodes and path illustrations were done using Google Maps 
JavaScript API v3 [16]. In Fig. 15, driver A picks up 
passenger B from his cluster. Then on his way to destination 
E, A picks up passengers C and D from a second cluster 
before dropping everyone off at the final destination. 

TABLE l IMPACT OF INITIAL SOLUTION 
Cases 

Metrics A (with initial B (without initial 
solution) solution) 

MiniMaxlAvg Fitness 71.4/98.8/85.1 50/98.9/83.8 

MinlMaxl Avg Increase 
0/28.6/7.2 0/14.3/4.1 in Distance (%) 

MiniMaxlAvg 
0/1.49/0.93 0/1.47/0.68 

Fairness 

# Late Arrivals 0 0 

# Used Cars 32 39 

# Solo Drivers 0 5 

--No Initial Solution --With Initial Solution 

90 286, 85.12565825 
80 

• # Used cars: # of operating cars, i.e. , the number of rides. 70 r 
( ..r--

453, 83.83285938 

• # Solo drivers: # of cars occupied solely by the driver 

The results confirm the usefulness of adding the proposed 
custom initial solution to the GA. Case A exhibits a higher 
fitness score. The number of operating cars is 32 versus 39 

for case B. Also, no driver rides alone in the scenario of case 
A, whereas there are 5 solo drivers in the other. Also, as 
shown in Fig. 13, case A converges much faster than case B .  
The average fitness value of  85.1 i s  reached in  286 iterations 
for case A, as compared to 83.8 in 453 iterations for B .  

C. Sparse versus Clustered Distribution of Users 

To study the effect of users' geographical distribution on 
the carpooling scheme, a second test was conducted using 
two extreme cases: a very sparse population and a highly 
clustered one. Although real life data show that populations 
in general do not fall into either of these categories, but 
somewhere in between, it is important to check that the 
model produces acceptable results irrespective of population 
distribution. Table II shows the results of two cases: 

• Case A is for a population of 8 clusters of 20 users each. 

• Case B is for a very sparse population of 160 users. 

Both scenarios produced very good results: the average 
fitness of case A is 84.4 and that of case B is 79.7. In both 
scenarios, the average increase in driven distance does not 
exceed lO%. Moreover, all the users' schedules are 
respected and no late arrivals occurred. The number of used 
cars is 41, which translates to 4 users/car on average. These 
test cases reflect well the advantages of carpooling: the car 
occupancy is increased to 4 while the cost incurred on the 
drivers is acceptable. Another advantage of the proposed 
approach is that it allows for a global solution rather than a 
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Fig 13. Average fitness vs number of generations for cases A and B 

TABLE II RESULTS FOR DIFFERENT POPULATION DISTRIBUTIONS 
Cases 

Metrics 
A (clustered) B (sparse) 

Min/Maxi Avg Fitness 50/99/84.4 50/97.4/79.7 

Mi nlM ax/ Avg lncrease 
0/23/6.4 0/35.7/9.9 in Distance (%) 

MiniMaxlAvg 
0/5.01/2.34 0/1.51/0.89 

Fairness 

# Late Arrivals 0 0 

# Used Cars 41 41 

# Solo Drivers 1 1 

D. Impact of Carpooler Riding Preferences 

The aim of this test is to assess the effectiveness of 
including the preferences cost function in the evaluation of 
the solution quality. The population is the same as that of the 
first test: 119 users going to four different destinations. Case 
A has a fitness function, which does not account for user 
preferences whereas case B has the complete fitness function 
shown in (6). The results are illustrated in Table III. 

Three new metrics are shown in this test, these are: 
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• Smoking (%): percentage of users whose smoking 
preferences are not met. 

• Age Group (%): percentage of users whose age group 
preferences are not met. 

• Car Capacity (%): percentage of users whose car capacity 
preferences are not met. 

Dest i nation 1 

Raifoun 

ZOuk EI 
Fig 14. Pick-ups from two clusters to a common destination 

Based on the survey results, the preferences were given 
different priorities, which specify their impact on the solution 
quality. Smoking has the highest priority (3), followed by car 
capacity (2) and age group (1). When preferences were taken 
into consideration, only 11.77% of the users had their 
smoking preferences unmet, versus 21.01% for case A. 
Moreover, 16.8% were unsatisfied with the age group, versus 
26.05% for case A. The car capacity numbers are close: 
11.43% for case A versus 18.75% for case B. This is because 
there are three additional operating cars in case A amongst 
which one solo driver. This decreases the average number of 
riders per car in scenario A, which is reflected in a lower 
percentage of unmet car capacity preferences. 

VI. CONCLUSION 

In this paper, a new automated carpooling system is 
proposed. The objective is to develop an intelligent and 
reliable transportation solution that reduces travel costs, 
traffic and parking congestions, and pollution while securing 
fairness, satisfying carpoolers' preferences, and incurring 
minimal costs among all participants. The presented approach 
is based on a customized GA coupled with a structured initial 
solution that takes into consideration preferences of the 
carpoolers. Preliminary tests have been performed to assess 
the efficiency of the model in different scenarios. The 
simulation results based on real data show that the model 
provides a high quality solution in a reasonable amount of 
time. Implementing a user rating system and tracking driver 
reliability and safety will be the subject of future work. 
Future research will also involve enhancements to the 
algorithm so that it can be run in a pseudo real time manner 
to allow for sudden changes in schedules. 

TABLE 1lI TEST RESULTS FOR DIFFERENT fiTNESS fuNCTIONS 
Cases 

Metrics 
A (no preferences) B (with preferences) 

MiniMaxl Avg Fitness 50/96.62/85.6 71.4/98.8/85.1 

MiniMaxlAvg 0/20.2/4.8 0/28.617.2 Increase in Distance (%) 
MiniMaxlAvg 

0/1.45/0.82 0/1.49/0.93 
Fairness 

# Late Arrivals 0 0 

# Used Cars 35 32 

# Solo Drivers I 0 

Smoking (%) 21.01 11.77 

Age Group (%) 26.05 16.8 

Car Capacity (%) 11.43 18.75 
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