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Abstract—Although many carpooling systems have been 
proposed, most of them lack various levels of automation, 
functionality, practicality, and solution quality. While Genetic 
Algorithms (GAs) have been successfully adopted for solving 
combinatorial optimization problems, their use is still rare in 
carpooling problems. Motivated to propose a solution for the 
many to many carpooling scenario, we present in this paper a GA 
with a customized fitness function that searches for the solution 
with minimal travel distance, efficient ride matching, timely 
arrival, and maximum fairness. The computational results and 
simulations based on real user data show the merits of the 
proposed method and motivate follow on research. 
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I.  INTRODUCTION 
It is a common knowledge that passenger cars are way 

underutilized, where cars are often observed with one or two 
riders. In fact 78% of Americans drive alone to work [1]. 
Carpooling is an effective approach to exploit available 
transportation resources. Carpooling problems are classified as 
either a Daily Carpooling Problem (DCPP) or a Long-term 
Carpooling Problem (LTCPP) [2]. In the first class of 
problems, each day a set of users declare themselves as drivers 
for that day. The challenge is to efficiently assign passengers to 
these drivers to ensure the lowest cost routes and respect the 
users’ schedules. The LTCPP is more challenging, as it is NP-
Complete [3]. Users in this case can be drivers on certain days 
and passengers on others. It is up to the system to effectively 
and fairly assign roles for the different days of carpooling.  

Carpooling presents many benefits. Financially, money is 
saved on gas, parking fees, and wear and tear on the vehicle. 
With an increase of carpooling, roads would become 
considerably less congested and parking spots more available. 
Moreover, carpooling is very eco-friendly. In fact, highway 
and off-highway vehicles contribute to roughly 80% of the 
total CO emissions [4]. Additionally, there are some social 
benefits to carpooling: less stress from daily driving and 
forming new friendships during ridesharing. Also, carpooling 
would enhance a sense of responsibility with those who tend to 
be late as they would become more accountable to the other 
commuters. Finally, leaving a car at home allows other family 
members to use it if need be. Despite all these benefits, 
carpoolers hardly constitute 15% out of all car passengers and 
drivers [4]. 

Carpooling scenarios can also be classified as many-to-one 
with multiple origins and one destination, one-to-many with 
one origin and multiple destinations, and many-to-many with 
multiple origins and destinations. For developing a practical 
system, this paper proposes for the long-term many-to-many 
carpooling problem a genetic algorithm (GA) with a 
customized fitness function. The objective is to minimize travel 
distance; and to offer an efficient ride matching, timely arrival 
of users, and fairness in driver selection. In the rest of this 
paper Section II presents related research, while Section III 
introduces the proposed model. Section IV contains 
computational and simulation results, whereas Section V 
concludes the work with future plans. 

II. RELATED LITERATURE 
One of the few research projects that have investigated the 

carpooling problem is [5] with a distributed algorithm that 
iteratively maps drivers with the earliest departure time to their 
destinations. It does not account for fairness, and gives sub-
optimal assignments (maximum of picked up passengers being 
80%). To start with, the authors in [6] subdivided the network 
of users into areas centered around a driver. A check is done on 
each passenger to see if a car with empty seats passes near him 
or her. This solution is fast, but it is globally optimal and thus it 
will not be fair when considering incremental driven distances. 
On the other hand, the Adaptive GA in [7] studied the LTCPP 
with a little knowledge about the search space. Drawback of 
this approach is the absence of individual fairness for near-
optimal solutions. In a different scheme, a clustering ant colony 
algorithm in [8] simulated the behavior of ants searching for an 
objective. The algorithm reached near-optimal results when the 
preferences and attractiveness formulas were well selected 
despite the lack of the fairness component. The work in [9] 
proposed a Lagrangian relaxation method based on a network 
flow technique that models the drivers and passengers’ routes 
and schedules. The solution is fast and efficient for small 
populations, but degraded quickly with large populations. Yet 
another approach is the one in [10], where two methods based 
on two integer-programming formulations are proposed while 
[11] present DCA Branch and Bound to globalize the obtained 
solution. And [12] presented a heuristic routing problem using 
the web, GIS, and SMS and assumed that car owners share 
rides to the same destination without accounting for users 
without cars or multiple destinations. 
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One attempt to solve the LTCPP is based on the notion of 
savings functions is in [13]. A set of proposed automatic and 
heuristic data processing routines allowed efficient matching of 
rides and yielded more than 50 percent savings in car traveled 
distances when compared to having no carpooling system. On 
the other hand, the Multi-Matching System in [14] devised an 
optimized matching model to intelligently match the 
passengers and the riders based on Lagrangian relaxation with 
sub-gradient methods. It focused on the fairness aspect, by 
considering driving distances along with the frequency of 
being a driver when computing fairness. Finally, the research 
in [15] attempted to secure fairness when determining the set 
of drivers from a group of carpooling participants for a given 
day. In spite of accounting for fairness though, they did not 
consider the distance traveled or the participants’ schedules. 

Different from the discussed research, our work offers 
innovative contributions and improves the insufficiently 
addressed issues, such as fairness and preferences, which can 
affect the willingness of users to participate in carpooling. 
Moreover, we insure that all participants secure a ride and 
allow the participation of users who do not own cars.  

III. PROPOSED MODEL 

This section gives the definition and the analysis for the 
understanding of the LTCPP.  

A. Problem Formulation 

To ensure that all participants secure a ride, we assume that 
the number of cars on a certain day is enough to accommodate 
all the users who wish to car pool on that day. The model also 
necessitates that all participants provide their requested rides 
beforehand. This data includes the car capacity if the user 
owns a car, the origin and destination of the user for each trip, 
the desired departure and arrival times, and personal 
preferences if any. Preferences include desired number of 
users to ride with, smoking permission, and a blacklist. In 
addition to the aforementioned user data, the geographical 
coordinates of all the users and destinations, and the distance 
and travel time between every two nodes of the network are 
needed to run the model. Our model can be viewed as a graph 
G = (PD ∪ SR, A): 

• PD is the set of potential drivers who own cars and can 
participate as drivers. Each potential driver pd∈   PD   is 
associated with an origin and a destination. 

• SR is the set of strictly riders who don’t have cars and can 
only participate as passengers. Each strictly rider sr∈  SR is 
associated with an origin and a destination. 

• A = {arc(i, j) / i, j ∈ (PD ∪ SR)} is the set of arcs 
connecting two different nodes from PD and SR. Each arc 
has a distance cost, and a time cost to be discussed later. 

Defining a ride R of n users where n ≤ Q, the vehicle’s 
maximum capacity, each ride will have a driver pd and some 
passengers from the pool PD ∪ SR. The driver starts the ride 
from his/her origin, picks up the passengers and drops them 
off to their destination(s), following the least cost path. The 
driver’s and the passengers’ departure and arrival times should 

be respected. The total cost for this ride will be the sum of the 
penalties incurred by every passenger in this ride as will be 
further clarified in the following section. 

Given the users’ requirement and constraints, the model 
aims to solve the LTCPP by minimizing the number of 
operating cars, assigning the role of driver or passenger for 
every pd while conserving individual fairness, associating 
passengers with each vehicle, and finding the least cost routes.  

B. Objective Function 

Assuming the following variables: 

• OCi: origin coordinates of user i 
• DCi: destination coordinates of user i 
• TD(i): departure time window for user i range [tLD(i), tHD(i)] 
• TA(i): arrival time window for user i of range [tLA(i), tHA(i)] 
• Ci: fairness counter for user i (i ∈  PD), incremented by one 

if i drives, and decremented by one if i doesn’t drive 
• Qi: user i’s maximum car capacity 

  The evaluation of the quality of a ride R is based on the 
following three costs: 

1) Distance Cost 

• Dk: original distance driven by driver of car k 
• Wj: waypoint j that car k has to pass through  
• Dk’: extra distance travelled by the driver when in pool k: 

Dk’ = 𝑑(𝑊! ,𝑊!!!)  !∈! −   𝐷! 
• dk: ratio representing extra distance driven by the driver of 

pool k 
          

k

k
k D

'Ddf(D) ==              (1)          

2) Time Cost 

• TA(i)
’: the time of arrival of passenger i at his destination  

TA(i)
’ =  𝑇! ! +    𝑑(𝑊! ,𝑊!!!)×  𝑉!"#  ×  𝜏  ×𝑠  !∈!  

• Vavg being an average speed depending on the road type  
• 𝜏 is the traffic condition affected by time of day, weather 

conditions, and special events 
• 𝑠 is a security rounding factor to ensure timely arrival  
• f(TA(i)

’): arrival time penalty for passenger i: 
f(TA(i)

’)= 

      
0  𝑖𝑓  𝑇!(!)! ∈ 𝑇!(!)

𝑉𝑒𝑟𝑦  ℎ𝑖𝑔ℎ   1000   𝑖𝑓  𝑇!(!)! > 𝑡!"(!)  
0.5  𝑖𝑓  𝑡!"(!) −   5𝑚𝑖𝑛 <   𝑇!(!)! <    𝑡!"(!)

 (2) 

3) Fairness Cost 

• f(Ci): fairness penalty for user i: 
              f(Ci)  =   𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(!!!!")                 (3) 

The fairness cost will account for the number of days and 
the amount of extra distance a user drives. 

4) Preferences Cost 

• Pi: set of preferences of user i with their relative priority, 
e.g., (Smoking, 1),  (Only 3 passengers, 3). 
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• Cost (preference) = 
0  𝑖𝑓  𝑚𝑒𝑡

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦  𝑖𝑓  𝑢𝑛𝑚𝑒𝑡  

                   f(P) = 𝑐𝑜𝑠𝑡(𝑗)!∈!!!∈!                 (4) 

With a smaller sum of the four costs, the quality of the ride 
R will be higher. The objective function (OF) then becomes: 

               OF = f D +   f T i + f(Ci) + f(P)!∈!   (5) 

IV. GENETIC ALGORITHM FOR CAR POOLING 

A. Overview 

GAs are adaptive search algorithms based on natural 
selection and survival of the fittest. Fig. 1 describes a standard 
GA workflow. We modified GA to improve convergence, 
with the selection of an initial solution that roughly chooses 
the early population instead of a randomly initialized one as 
well as a parallel implementation of GA. 

B. Initial Solution 

The main components of this algorithm are the arrival and 
departure times of the user and the extra distance driven. The 
initial solution produces a set of solutions with a varied 
number of drivers for each solution. Initially, the drivers are 
randomly selected from PD. To assign passengers to vehicles, 
the algorithm performs three checks. The first one checks for 
the existence of at least one empty seat in the driver’s car. The 
second one evaluates the ratio of the extra distance to be 
driven if the pickup takes place to the original distance to be 
driven without pickup. This ratio must be less than or equal to 
the average of the ratios computed for all pairs of drivers and 
unassigned passengers. The third one verifies if the pickup 
affects the driver’s desired arrival time. If the last check isn’t 
met, the offset from the driver’s arrival time is evaluated as it 
must be smaller or equal to the average of the offsets 
computed for all pairs of drivers and unassigned passengers. 

 
Fig. 1. Genetic Algorithm workflow 

The pseudo-code shown in Fig. 2 uses the following 
variables and functions: 

• RAU: set of unassigned users 
• Drivers: set of assigned drivers 
• getRandomDriver(): returns a random user from PD after 

removing it from the set 

• distanceRatio(Driver,User): returns  the ratio of the 
distance it takes for Driver to pick up User and drop 
him/her off at his/her destination to the distance from 
Driver origin to destination 

• timeDifference(Driver,User): return the extra time it takes 
for Driver to pick up User and drop him/her off at his/her 
destination 

• globalDistanceRatio(Drivers,RAU): the average of the 
distanceRatio() between each User in Driver with all the 
Users of RAU 

• globalTimeRatio(Drivers,RAU): the average of the 
timeDifference() between each User in Driver with all the 
Users of RAU 

• pickUpWithinTimeWindow(Driver,User): return true if 
Driver can pick up User and stay within his/her desired 
time window 

• condition1: driver has remaining car capacity > 0 && 
distanceRatio(Driver,User) <= globalDistanceRatio && 
pickUpWithinTimeWindow(Driver,User) 

• condition2: driver has remaining car capacity > 0 && 
distanceRatio(Driver,User) <= globalDistanceRatio && 
timeDifference(User,Driver) <= globalTimeRatio 

• condition3: driver has remaining car capacity > 0 && 
distanceRatio(Driver,User) <= globalDistanceRatio 

 
Fig. 2. Initial solution for a predefined number of drivers 

1. Solution ! null 
2. For i = 0, …, numberOfDrivers -1 
3.    Driver ! getRandomDriver() 
4.    Chromosome ! Chromosome with first   

          gene set to Driver and rest is empty 
5.    Solution.add(Chromosome) 
6.    Drivers.add(Driver) 
7. End For 
8. RAU " PD +SR 
9. While RAU is not empty 
10.    globalDistanceRatio !     

      getGlobalDistanceRatio(Drivers,RAU)  
11.    globalTimeRatio" getGlobalTimeRatio(     

     Drivers,RAU) 
12.    addedUsertoSolutions " false 
13.    For each Driver in Drivers 
14.       For each User in RAU 
15.          If condition1 is satisfied 
16.            Solution(index of Drives in   

                Drivers).add(User) 
17.            addedUsertoSolutions !true 
18.          End if 
19.      End For 
20.      If addedUsertoSolutions is false 
21.         For each User in RAU 
22.            If condition2 is satisfied 
23.              Solution(index of Drives in   

                    Drivers).add(User) 
24.              addedUsertoSolutions !true 
25.            End if 
26.         End For 
27.      End if 
28.      If addedUsertoSolutions is false 
29.        For each User in RAU 
30.           If condition3 is satisfied 
31.               Solution(index of Drives in  

                       Drivers).add(User) 
32.               addedUsertoSolutions ßtrue 
33.           End if 
34.        End For 
35.      End if 
36.    End For 
37. End While 

Return Solution 
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C. Population Encoding 

Each chromosome as shown in Fig.3, represents a ride and 
the genes the car occupants. The set of all chromosomes 
belonging to a thread constitutes a solution. Within a thread 
and after every evolution, the genes are swapped and/or 
mutated to obtain better rides. The number of drivers is bound 
to the number of chromosomes in the population. The 
passengers as listed in Fig.3, are not in the order of pickup. 
Instead the path is computed using the origin and destination 
coordinates of each user in the chromosome, and fitness 
evaluations are based on these calculations. 

 
Fig. 3. Sample chromosome 

D. Fitness and Operators 

Since the fitness of a chromosome should reflect the 
quality of the ride, it should thus include distance, travel time 
and fairness metrics. Thus, the fitness function (FF) is: 

𝐹𝐹 =
50  𝑖𝑓  𝑠𝑜𝑙𝑜  𝑑𝑟𝑖𝑣𝑒𝑟

100 −   f D +   f T i + f Ci!∈! + f P   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     (6) 

    The FF attributes different weights to the four costs:          

1) f(D) ranges between 0 and 100; any value greater than 100 
is clamped. 

2) f(T(i)) has a value of 0 for a solution in the time window, 
and a value of 100 for exceeding the time limit.  

3) f(Ci) is an exponent of a constant. The greater the number 
of days a user has to drive, the faster this function grows. 

4) f(P) is a small integer reflecting the priority that a user 
attributes to his preferences. 

GA standard operators have also been modified and one 
was created to suit the requirements of the car-pooling model: 

1) Crossover: given 2 chromosomes, 2 random indexes are 
computed to determine the crossover positions. The 
chromosomes are swapped only if the resulting 2 
chromosomes are better than their parents while a check tests 
if the first position is still a driver.  

2) Mutation: The mutation is a swap between two 
different chromosomes because a user cannot be completely 
removed from the solution. The mutation is kept and the 
population is updated only if the sum of the new fitness from 
the two new chromosomes is greater than their parents’. 

3) DriverSwitch: Since the driver in the chromosome 
might not be the best driver to take the passengers, this 
operator randomly switches the driver with another potential 
driver from the genes. Only if the resulting chromosome turns 
out to be better than the previous one, changes are saved. 

V. SIMULATION RESULTS 

In order to test the proposed model on real world scenarios, 
we performed multiple tests using real user data consisting of 

119 students wishing to car pool to four different university 
campuses in Lebanon. To build the model and the solution 
algorithm, the Java computer language was used. Since the 
preferences cost function is still not finalized, it was 
disregarded in the tests for the time being. The tests were 
performed on an Intel Core i7-3632QM CPU @ 2.20GHz and 
6 GB of RAM in the environment of Microsoft Windows 8. 

A. Advantage of the Initial Solution Algorithm 

This test is run with the full population of 119 users and 
four destinations. Case A runs the proposed model as 
described in this paper. Case B runs the GA without the 
proposed initial solution algorithm, i.e. using a standard GA 
encoding. The results are summarized in Table I where: 

• Fitness: as in (6), but without the preferences component. 
• Time Penalty: reflects if users arrived according to their 

desired schedules. A value of 0 indicates that all users of 
the corresponding ride arrived as desired. A value between 
0 and 100 indicates that one or more users arrived earlier 
than desired. A value of 100 or above means one or more 
users arrived late. 

• Increase in distance (%): is the % of extra distance 
incurred by the driver when picking up other passengers.  

• Fairness: fairness score as calculated in (3). 
• # Used cars: the number of operating cars  
• # Solo drivers: the number of cars occupied by one driver 

The results confirm the usefulness of adding the proposed 
initial solution: all metrics scores are higher for case A as 
compared to case B. Also, as shown in Fig. 4, case A 
converges faster than case B. The average fitness value of 90.4 
is reached in 480 iterations for case A, versus 818 for case B. 

TABLE I. IMPACT OF INITIAL SOLUTION 

Metrics 
Cases 

A (with initial 
solution) 

B (without 
initial solution) 

Min/Max/Avg Fitness 50/97.7/90.4 50/98.6/89.3 
Min/Max/Avg Increase in Distance (%) 0/18/3.97 0/12.8/4.1 

Min/Max/Avg Time Penalty 0/9/3.57 0/11/4.46 
Min/Max/Avg Fairness 0/1.47/0.75 0/1.47/0.80 

# Used Cars 35 35 
# Solo Drivers 1 1 

B.  Different fitness functions 

 The purpose here is to investigate the impact of these three 
costs on the quality of the car-pooling solution. The test 
results are summarized in table II. In case A, the fitness 
function accounts for the distance, time, and fairness costs, 
while disregarding the preferences cost; in case B, for the 
distance cost only; and in case C, for the time cost only. It can 
be noted that in case B, a time penalty of 101 is seen. This 
means that in at least one ride, a certain number of users 
arrived late to their destination(s). In case C, an increase in 
distance of 4497% is observed. This means that at least one 
driver is driving almost 45 times the distance s/he would have 
driven if no passengers were picked up. 
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TABLE II. IMPACT OF DIFFERENT FITNESS FUNCTIONS 

Metrics Cases 
A (3 costs) B (distance cost) C (time cost) 

Min/Max/Avg Complete Fitness 50/97.7/90.3 -14/98.7/86.3 -9645/82/-740 
Min/Max/Avg Edited Fitness 50/97.7/90.3 87.3/99.9/95 50/100/94.5 

Min/Max/Avg Increase in 
Distance (%) 0/18/3.97 0/12.7/4.7 15.9/4497/64

4 
Min/Max/Avg Time Penalty 0/9/3.57 0/101/8 0/2/0.25 

Min/Max/Avg Fairness 0/1.47/0.75 0/1.47/0.96 0/5247/189 
# Used Cars 35 31 28 

# Solo Drivers 1 0 3 

  
 Fig. 4. Average fitness value versus number of generations for cases A and B  

C. Sparse versus Clustered Distribution of Users 

To study the effect of geographical distribution, a third test 
was done with a very sparse population and a highly clustered 
one. Table III shows the results, where case A is for a 
population made of 8 clusters of 20 users each, and case B. 
Both scenarios produced very good results: the average fitness 
of case A is 89.4 and that of case B is 82.1. The increase in 
driven distance does not exceed 10% and no late arrivals 
occurred. Another advantage of the proposed approach is that 
it allows for a global solution (Fig. 5), which represents rides 
from case A. The nodes and path illustrations were done using 
Google Maps JavaScript API v3 [15]. In the figure, driver A 
picks up passengers B, C, D, and E and continues to the first 
destination F where s/he drops off one or more passengers, 
then to the final destination G. All the picked up passengers 
are from the same cluster, which alludes to a local solution. 

TABLE III. TEST RESULTS FOR DIFFERENT POPULATION DISTRIBUTIONS 

Metrics Cases 
A (clustered) B (sparse) 

Min/Max/Avg Fitness 0.56/99/89.4 50/98.8/82.1 
Min/Max/Avg Increase in Distance (%) 0/23/6.4 1.4/24.1/9.4 

Min/Max/Avg Time Penalty 0/13/2.31 0/12/4.1 
Min/Max/Avg Fairness 0/1.5/0.78 0/1.5/0.87 

# Used Cars 41 41 
# Solo Drivers 1 1 

VI. Conclusion 

 In this paper, a model is proposed to solve the LTCPP, 
where the presented approach is based on a customized GA 

coupled with a structured initial solution. Preliminary tests 
have been performed to assess the efficiency of the model in 
different scenarios. Finalizing user preferences and 
implementing a user rating system will be the subject of future 
work. Future research will also involve enhancements to the 
algorithm to allow sudden change of schedules.  

 

 
Fig. 5  Pick-ups from one cluster to two destination 

REFERENCES 
[1] G. Eason, B. Noble, and I. Sneddon, “On certain integrals of Lipschitz-

Hankel type involving products of Bessel functions,” Phil. Trans. Roy. 
Soc. London, vol. A247, pp. 529–551, April 1955. 

[2] Varrentrapp, K., Maniezzo, V., Stutzle, T.: The Long Term Car Pooling 
Problem: On the Soundness of the Problem Formulation and Proof of 
NP-completeness. Technische Universitat Darmstadt (2002) 

[3] Maniezzo, V., Carbonaro, A., Hildmann, H.: An ANTS heuristic for the 
long-term car pooling problem. In: New Optimization Techniques in 
Engineering, pp. 411–430 (2004) 

[4] Son, Ta Anh, Le Thi Hoai An, Pham Dinh Tao, and Djamel Khadraoui. 
"A Distributed Algorithm Solving Multiobjective Dynamic Car Pooling 
Problem." Int’l Conf. on Computer & Information Science. 2012. 

[5] Sghair, Manel, Hayfa Zgaya, Slim Hammandi, and Christian Tahon. "A 
Distributed Dijkstra's Algorithm For The Implementation Of A Real 
Time Carpooling Service With An Optimized Aspect On Siblings." 
IEEE Annual Conf. on Intelligent Transportation Systems. Madeira 
Island, Portugal, 2010. 

[6] Guo, Yuhan - Goncalves, Gilles - Hsu, Tienté. A Multi-agent Based Self-
adaptive Genertic Algorithm for the Long-term Car Pooling Problem. 
Springer Science Business Media B.V. 2012, 2011. 

[7] Guo, Yuhan, Gilles Goncalves, and Tienté Hsu. "A Clustering Ant 
Colony Algorithm for the Long-term Car Pooling Problem." Int’l Conf. 
on swarm interlligence. Lille, France, 2011. 

[8] Yan, Shangyao, Chun-Ying Chen, and Yu-Fang Lin. "A Model With a 
Heuristic Algorithm for Solving the Long-term Many-to-Many Car 
Pooling Problem." IEEE TRANSACTIONS ON INTELLIGENT 
TRANSPORTATION SYSTEMS, 2011. 

[9] Baldacci R., Maniezzo V. and Mingozzi A.: An Exact Method for the 
Car Pooling Problem Based on Lagrangean Column Generation. Oper. 
Res. 52(3) (June 2004) 422-439 

[10] Ta Anh Son, Le T hi Hoai An, Gerald Arnould, Djamel Khadraoui and 
Pharn Dinh Tao: Solving Car Pooling Problem using DCA, Global 
Information Infrastructure Symposium, Danang Aug. 2011, pp.1-6. 

[11] Calvo R. W., Luigi F. L., Haastrup P. and Maniezzo V: A distributed 
geographic information system for the daily car pooling problem, 
Computers and Operations Research, 31 (2004) 2263-2278 

[12] E. Ferrari, R. Manzini. The car pooling problem: heuristic algorithms 
based on savings functions. Journal of Advanced Transportation, 
37(3):243-272, 2003. 

[13] Y. Lin. Matching Model and Heuristic Algorithm for Fairness in the Car 
pool Problem. PhD Thesis, National Central University, Taiwan, 2009. 

[14] Williams, & Fagin. (1983). A Fair Carpool Scheduling Algorithm. IBM 
Journal of Research, 133-139. 

[15] Google maps api family. (n.d.). Retrieved from h 
https://developers.google.com/map

 

17th IEEE Mediterranean Electrotechnical Conference, Beirut, Lebanon, 13-16 April 2014.

186


