
An Intelligent and Fair GA Carpooling Scheduler as
a Social Solution for Greener Transportation

Carl Michael Boukhater, Oussama Dakroub, Fayez Lahoud, Mariette Awad, Hassan Artail
Department of Electrical and Computer Engineering

American University of Beirut
Beirut, Lebanon

Emails: {cab14, ohd01, fal00, mariette.awad, hartail}@aub.edu.lb

Abstract—Although many carpooling systems have been
proposed, most of them lack various levels of automation,
functionality, practicality, and solution quality. While Genetic
Algorithms (GAs) have been successfully adopted for solving
combinatorial optimization problems, their use is still rare in
carpooling problems. Motivated to propose a solution for the
many to many carpooling scenario, we present in this paper a GA
with a customized fitness function that searches for the solution
with minimal travel distance, efficient ride matching, timely
arrival, and maximum fairness. The computational results and
simulations based on real user data show the merits of the
proposed method and motivate follow on research.

Keywords-carpooling; GA; intelligent transportation

I. INTRODUCTION
It is a common knowledge that passenger cars are way

underutilized, where cars are often observed with one or two
riders. In fact 78% of Americans drive alone to work [1].
Carpooling is an effective approach to exploit available
transportation resources. Carpooling problems are classified as
either a Daily Carpooling Problem (DCPP) or a Long-term
Carpooling Problem (LTCPP) [2]. In the first class of
problems, each day a set of users declare themselves as drivers
for that day. The challenge is to efficiently assign passengers to
these drivers to ensure the lowest cost routes and respect the
users’ schedules. The LTCPP is more challenging, as it is NP-
Complete [3]. Users in this case can be drivers on certain days
and passengers on others. It is up to the system to effectively
and fairly assign roles for the different days of carpooling.

Carpooling presents many benefits. Financially, money is
saved on gas, parking fees, and wear and tear on the vehicle.
With an increase of carpooling, roads would become
considerably less congested and parking spots more available.
Moreover, carpooling is very eco-friendly. In fact, highway
and off-highway vehicles contribute to roughly 80% of the
total CO emissions [4]. Additionally, there are some social
benefits to carpooling: less stress from daily driving and
forming new friendships during ridesharing. Also, carpooling
would enhance a sense of responsibility with those who tend to
be late as they would become more accountable to the other
commuters. Finally, leaving a car at home allows other family
members to use it if need be. Despite all these benefits,
carpoolers hardly constitute 15% out of all car passengers and
drivers [4].

Carpooling scenarios can also be classified as many-to-one
with multiple origins and one destination, one-to-many with
one origin and multiple destinations, and many-to-many with
multiple origins and destinations. For developing a practical
system, this paper proposes for the long-term many-to-many
carpooling problem a genetic algorithm (GA) with a
customized fitness function. The objective is to minimize travel
distance; and to offer an efficient ride matching, timely arrival
of users, and fairness in driver selection. In the rest of this
paper Section II presents related research, while Section III
introduces the proposed model. Section IV contains
computational and simulation results, whereas Section V
concludes the work with future plans.

II. RELATED LITERATURE
One of the few research projects that have investigated the

carpooling problem is [5] with a distributed algorithm that
iteratively maps drivers with the earliest departure time to their
destinations. It does not account for fairness, and gives sub-
optimal assignments (maximum of picked up passengers being
80%). To start with, the authors in [6] subdivided the network
of users into areas centered around a driver. A check is done on
each passenger to see if a car with empty seats passes near him
or her. This solution is fast, but it is globally optimal and thus it
will not be fair when considering incremental driven distances.
On the other hand, the Adaptive GA in [7] studied the LTCPP
with a little knowledge about the search space. Drawback of
this approach is the absence of individual fairness for near-
optimal solutions. In a different scheme, a clustering ant colony
algorithm in [8] simulated the behavior of ants searching for an
objective. The algorithm reached near-optimal results when the
preferences and attractiveness formulas were well selected
despite the lack of the fairness component. The work in [9]
proposed a Lagrangian relaxation method based on a network
flow technique that models the drivers and passengers’ routes
and schedules. The solution is fast and efficient for small
populations, but degraded quickly with large populations. Yet
another approach is the one in [10], where two methods based
on two integer-programming formulations are proposed while
[11] present DCA Branch and Bound to globalize the obtained
solution. And [12] presented a heuristic routing problem using
the web, GIS, and SMS and assumed that car owners share
rides to the same destination without accounting for users
without cars or multiple destinations.

17th IEEE Mediterranean Electrotechnical Conference, Beirut, Lebanon, 13-16 April 2014.

978-1-4799-2337-3/14/$31.00 ©2014 IEEE 182

One attempt to solve the LTCPP is based on the notion of
savings functions is in [13]. A set of proposed automatic and
heuristic data processing routines allowed efficient matching of
rides and yielded more than 50 percent savings in car traveled
distances when compared to having no carpooling system. On
the other hand, the Multi-Matching System in [14] devised an
optimized matching model to intelligently match the
passengers and the riders based on Lagrangian relaxation with
sub-gradient methods. It focused on the fairness aspect, by
considering driving distances along with the frequency of
being a driver when computing fairness. Finally, the research
in [15] attempted to secure fairness when determining the set
of drivers from a group of carpooling participants for a given
day. In spite of accounting for fairness though, they did not
consider the distance traveled or the participants’ schedules.

Different from the discussed research, our work offers
innovative contributions and improves the insufficiently
addressed issues, such as fairness and preferences, which can
affect the willingness of users to participate in carpooling.
Moreover, we insure that all participants secure a ride and
allow the participation of users who do not own cars.

III. PROPOSED MODEL

This section gives the definition and the analysis for the
understanding of the LTCPP.

A. Problem Formulation

To ensure that all participants secure a ride, we assume that
the number of cars on a certain day is enough to accommodate
all the users who wish to car pool on that day. The model also
necessitates that all participants provide their requested rides
beforehand. This data includes the car capacity if the user
owns a car, the origin and destination of the user for each trip,
the desired departure and arrival times, and personal
preferences if any. Preferences include desired number of
users to ride with, smoking permission, and a blacklist. In
addition to the aforementioned user data, the geographical
coordinates of all the users and destinations, and the distance
and travel time between every two nodes of the network are
needed to run the model. Our model can be viewed as a graph
G = (PD ∪ SR, A):

• PD is the set of potential drivers who own cars and can
participate as drivers. Each potential driver pd∈ PD is
associated with an origin and a destination.

• SR is the set of strictly riders who don’t have cars and can
only participate as passengers. Each strictly rider sr∈ SR is
associated with an origin and a destination.

• A = {arc(i, j) / i, j ∈ (PD ∪ SR)} is the set of arcs
connecting two different nodes from PD and SR. Each arc
has a distance cost, and a time cost to be discussed later.

Defining a ride R of n users where n ≤ Q, the vehicle’s
maximum capacity, each ride will have a driver pd and some
passengers from the pool PD ∪ SR. The driver starts the ride
from his/her origin, picks up the passengers and drops them
off to their destination(s), following the least cost path. The
driver’s and the passengers’ departure and arrival times should

be respected. The total cost for this ride will be the sum of the
penalties incurred by every passenger in this ride as will be
further clarified in the following section.

Given the users’ requirement and constraints, the model
aims to solve the LTCPP by minimizing the number of
operating cars, assigning the role of driver or passenger for
every pd while conserving individual fairness, associating
passengers with each vehicle, and finding the least cost routes.

B. Objective Function

Assuming the following variables:

• OCi: origin coordinates of user i
• DCi: destination coordinates of user i
• TD(i): departure time window for user i range [tLD(i), tHD(i)]
• TA(i): arrival time window for user i of range [tLA(i), tHA(i)]
• Ci: fairness counter for user i (i ∈ PD), incremented by one

if i drives, and decremented by one if i doesn’t drive
• Qi: user i’s maximum car capacity

 The evaluation of the quality of a ride R is based on the
following three costs:

1) Distance Cost

• Dk: original distance driven by driver of car k
• Wj: waypoint j that car k has to pass through
• Dk’: extra distance travelled by the driver when in pool k:

Dk’ = 𝑑(𝑊! ,𝑊!!!) !∈! − 𝐷!
• dk: ratio representing extra distance driven by the driver of

pool k

k

k
k D

'Ddf(D) == (1)

2) Time Cost

• TA(i)
’: the time of arrival of passenger i at his destination

TA(i)
’ = 𝑇! ! + 𝑑(𝑊! ,𝑊!!!)× 𝑉!"# × 𝜏 ×𝑠 !∈!

• Vavg being an average speed depending on the road type
• 𝜏 is the traffic condition affected by time of day, weather

conditions, and special events
• 𝑠 is a security rounding factor to ensure timely arrival
• f(TA(i)

’): arrival time penalty for passenger i:
f(TA(i)

’)=

0 𝑖𝑓 𝑇!(!)! ∈ 𝑇!(!)

𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 1000 𝑖𝑓 𝑇!(!)! > 𝑡!"(!)
0.5 𝑖𝑓 𝑡!"(!) − 5𝑚𝑖𝑛 < 𝑇!(!)! < 𝑡!"(!)

 (2)

3) Fairness Cost

• f(Ci): fairness penalty for user i:
 f(Ci) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(!!!!") (3)

The fairness cost will account for the number of days and
the amount of extra distance a user drives.

4) Preferences Cost

• Pi: set of preferences of user i with their relative priority,
e.g., (Smoking, 1), (Only 3 passengers, 3).

17th IEEE Mediterranean Electrotechnical Conference, Beirut, Lebanon, 13-16 April 2014.

183

• Cost (preference) =
0 𝑖𝑓 𝑚𝑒𝑡

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑖𝑓 𝑢𝑛𝑚𝑒𝑡

 f(P) = 𝑐𝑜𝑠𝑡(𝑗)!∈!!!∈! (4)

With a smaller sum of the four costs, the quality of the ride
R will be higher. The objective function (OF) then becomes:

 OF = f D + f T i + f(Ci) + f(P)!∈! (5)

IV. GENETIC ALGORITHM FOR CAR POOLING

A. Overview

GAs are adaptive search algorithms based on natural
selection and survival of the fittest. Fig. 1 describes a standard
GA workflow. We modified GA to improve convergence,
with the selection of an initial solution that roughly chooses
the early population instead of a randomly initialized one as
well as a parallel implementation of GA.

B. Initial Solution

The main components of this algorithm are the arrival and
departure times of the user and the extra distance driven. The
initial solution produces a set of solutions with a varied
number of drivers for each solution. Initially, the drivers are
randomly selected from PD. To assign passengers to vehicles,
the algorithm performs three checks. The first one checks for
the existence of at least one empty seat in the driver’s car. The
second one evaluates the ratio of the extra distance to be
driven if the pickup takes place to the original distance to be
driven without pickup. This ratio must be less than or equal to
the average of the ratios computed for all pairs of drivers and
unassigned passengers. The third one verifies if the pickup
affects the driver’s desired arrival time. If the last check isn’t
met, the offset from the driver’s arrival time is evaluated as it
must be smaller or equal to the average of the offsets
computed for all pairs of drivers and unassigned passengers.

Fig. 1. Genetic Algorithm workflow

The pseudo-code shown in Fig. 2 uses the following
variables and functions:

• RAU: set of unassigned users
• Drivers: set of assigned drivers
• getRandomDriver(): returns a random user from PD after

removing it from the set

• distanceRatio(Driver,User): returns the ratio of the
distance it takes for Driver to pick up User and drop
him/her off at his/her destination to the distance from
Driver origin to destination

• timeDifference(Driver,User): return the extra time it takes
for Driver to pick up User and drop him/her off at his/her
destination

• globalDistanceRatio(Drivers,RAU): the average of the
distanceRatio() between each User in Driver with all the
Users of RAU

• globalTimeRatio(Drivers,RAU): the average of the
timeDifference() between each User in Driver with all the
Users of RAU

• pickUpWithinTimeWindow(Driver,User): return true if
Driver can pick up User and stay within his/her desired
time window

• condition1: driver has remaining car capacity > 0 &&
distanceRatio(Driver,User) <= globalDistanceRatio &&
pickUpWithinTimeWindow(Driver,User)

• condition2: driver has remaining car capacity > 0 &&
distanceRatio(Driver,User) <= globalDistanceRatio &&
timeDifference(User,Driver) <= globalTimeRatio

• condition3: driver has remaining car capacity > 0 &&
distanceRatio(Driver,User) <= globalDistanceRatio

Fig. 2. Initial solution for a predefined number of drivers

1. Solution ! null
2. For i = 0, …, numberOfDrivers -1
3. Driver ! getRandomDriver()
4. Chromosome ! Chromosome with first

 gene set to Driver and rest is empty
5. Solution.add(Chromosome)
6. Drivers.add(Driver)
7. End For
8. RAU " PD +SR
9. While RAU is not empty
10. globalDistanceRatio !

 getGlobalDistanceRatio(Drivers,RAU)
11. globalTimeRatio" getGlobalTimeRatio(

 Drivers,RAU)
12. addedUsertoSolutions " false
13. For each Driver in Drivers
14. For each User in RAU
15. If condition1 is satisfied
16. Solution(index of Drives in

 Drivers).add(User)
17. addedUsertoSolutions !true
18. End if
19. End For
20. If addedUsertoSolutions is false
21. For each User in RAU
22. If condition2 is satisfied
23. Solution(index of Drives in

 Drivers).add(User)
24. addedUsertoSolutions !true
25. End if
26. End For
27. End if
28. If addedUsertoSolutions is false
29. For each User in RAU
30. If condition3 is satisfied
31. Solution(index of Drives in

 Drivers).add(User)
32. addedUsertoSolutions ßtrue
33. End if
34. End For
35. End if
36. End For
37. End While

Return Solution

17th IEEE Mediterranean Electrotechnical Conference, Beirut, Lebanon, 13-16 April 2014.

184

C. Population Encoding

Each chromosome as shown in Fig.3, represents a ride and
the genes the car occupants. The set of all chromosomes
belonging to a thread constitutes a solution. Within a thread
and after every evolution, the genes are swapped and/or
mutated to obtain better rides. The number of drivers is bound
to the number of chromosomes in the population. The
passengers as listed in Fig.3, are not in the order of pickup.
Instead the path is computed using the origin and destination
coordinates of each user in the chromosome, and fitness
evaluations are based on these calculations.

Fig. 3. Sample chromosome

D. Fitness and Operators

Since the fitness of a chromosome should reflect the
quality of the ride, it should thus include distance, travel time
and fairness metrics. Thus, the fitness function (FF) is:

𝐹𝐹 =
50 𝑖𝑓 𝑠𝑜𝑙𝑜 𝑑𝑟𝑖𝑣𝑒𝑟

100 − f D + f T i + f Ci!∈! + f P 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (6)

 The FF attributes different weights to the four costs:

1) f(D) ranges between 0 and 100; any value greater than 100
is clamped.

2) f(T(i)) has a value of 0 for a solution in the time window,
and a value of 100 for exceeding the time limit.

3) f(Ci) is an exponent of a constant. The greater the number
of days a user has to drive, the faster this function grows.

4) f(P) is a small integer reflecting the priority that a user
attributes to his preferences.

GA standard operators have also been modified and one
was created to suit the requirements of the car-pooling model:

1) Crossover: given 2 chromosomes, 2 random indexes are
computed to determine the crossover positions. The
chromosomes are swapped only if the resulting 2
chromosomes are better than their parents while a check tests
if the first position is still a driver.

2) Mutation: The mutation is a swap between two
different chromosomes because a user cannot be completely
removed from the solution. The mutation is kept and the
population is updated only if the sum of the new fitness from
the two new chromosomes is greater than their parents’.

3) DriverSwitch: Since the driver in the chromosome
might not be the best driver to take the passengers, this
operator randomly switches the driver with another potential
driver from the genes. Only if the resulting chromosome turns
out to be better than the previous one, changes are saved.

V. SIMULATION RESULTS

In order to test the proposed model on real world scenarios,
we performed multiple tests using real user data consisting of

119 students wishing to car pool to four different university
campuses in Lebanon. To build the model and the solution
algorithm, the Java computer language was used. Since the
preferences cost function is still not finalized, it was
disregarded in the tests for the time being. The tests were
performed on an Intel Core i7-3632QM CPU @ 2.20GHz and
6 GB of RAM in the environment of Microsoft Windows 8.

A. Advantage of the Initial Solution Algorithm

This test is run with the full population of 119 users and
four destinations. Case A runs the proposed model as
described in this paper. Case B runs the GA without the
proposed initial solution algorithm, i.e. using a standard GA
encoding. The results are summarized in Table I where:

• Fitness: as in (6), but without the preferences component.
• Time Penalty: reflects if users arrived according to their

desired schedules. A value of 0 indicates that all users of
the corresponding ride arrived as desired. A value between
0 and 100 indicates that one or more users arrived earlier
than desired. A value of 100 or above means one or more
users arrived late.

• Increase in distance (%): is the % of extra distance
incurred by the driver when picking up other passengers.

• Fairness: fairness score as calculated in (3).
• # Used cars: the number of operating cars
• # Solo drivers: the number of cars occupied by one driver

The results confirm the usefulness of adding the proposed
initial solution: all metrics scores are higher for case A as
compared to case B. Also, as shown in Fig. 4, case A
converges faster than case B. The average fitness value of 90.4
is reached in 480 iterations for case A, versus 818 for case B.

TABLE I. IMPACT OF INITIAL SOLUTION

Metrics
Cases

A (with initial
solution)

B (without
initial solution)

Min/Max/Avg Fitness 50/97.7/90.4 50/98.6/89.3
Min/Max/Avg Increase in Distance (%) 0/18/3.97 0/12.8/4.1

Min/Max/Avg Time Penalty 0/9/3.57 0/11/4.46
Min/Max/Avg Fairness 0/1.47/0.75 0/1.47/0.80

Used Cars 35 35
Solo Drivers 1 1

B. Different fitness functions

 The purpose here is to investigate the impact of these three
costs on the quality of the car-pooling solution. The test
results are summarized in table II. In case A, the fitness
function accounts for the distance, time, and fairness costs,
while disregarding the preferences cost; in case B, for the
distance cost only; and in case C, for the time cost only. It can
be noted that in case B, a time penalty of 101 is seen. This
means that in at least one ride, a certain number of users
arrived late to their destination(s). In case C, an increase in
distance of 4497% is observed. This means that at least one
driver is driving almost 45 times the distance s/he would have
driven if no passengers were picked up.

17th IEEE Mediterranean Electrotechnical Conference, Beirut, Lebanon, 13-16 April 2014.

185

TABLE II. IMPACT OF DIFFERENT FITNESS FUNCTIONS

Metrics Cases
A (3 costs) B (distance cost) C (time cost)

Min/Max/Avg Complete Fitness 50/97.7/90.3 -14/98.7/86.3 -9645/82/-740
Min/Max/Avg Edited Fitness 50/97.7/90.3 87.3/99.9/95 50/100/94.5

Min/Max/Avg Increase in
Distance (%) 0/18/3.97 0/12.7/4.7 15.9/4497/64

4
Min/Max/Avg Time Penalty 0/9/3.57 0/101/8 0/2/0.25

Min/Max/Avg Fairness 0/1.47/0.75 0/1.47/0.96 0/5247/189
Used Cars 35 31 28

Solo Drivers 1 0 3

 Fig. 4. Average fitness value versus number of generations for cases A and B

C. Sparse versus Clustered Distribution of Users

To study the effect of geographical distribution, a third test
was done with a very sparse population and a highly clustered
one. Table III shows the results, where case A is for a
population made of 8 clusters of 20 users each, and case B.
Both scenarios produced very good results: the average fitness
of case A is 89.4 and that of case B is 82.1. The increase in
driven distance does not exceed 10% and no late arrivals
occurred. Another advantage of the proposed approach is that
it allows for a global solution (Fig. 5), which represents rides
from case A. The nodes and path illustrations were done using
Google Maps JavaScript API v3 [15]. In the figure, driver A
picks up passengers B, C, D, and E and continues to the first
destination F where s/he drops off one or more passengers,
then to the final destination G. All the picked up passengers
are from the same cluster, which alludes to a local solution.

TABLE III. TEST RESULTS FOR DIFFERENT POPULATION DISTRIBUTIONS

Metrics Cases
A (clustered) B (sparse)

Min/Max/Avg Fitness 0.56/99/89.4 50/98.8/82.1
Min/Max/Avg Increase in Distance (%) 0/23/6.4 1.4/24.1/9.4

Min/Max/Avg Time Penalty 0/13/2.31 0/12/4.1
Min/Max/Avg Fairness 0/1.5/0.78 0/1.5/0.87

Used Cars 41 41
Solo Drivers 1 1

VI. Conclusion

 In this paper, a model is proposed to solve the LTCPP,
where the presented approach is based on a customized GA

coupled with a structured initial solution. Preliminary tests
have been performed to assess the efficiency of the model in
different scenarios. Finalizing user preferences and
implementing a user rating system will be the subject of future
work. Future research will also involve enhancements to the
algorithm to allow sudden change of schedules.

Fig. 5 Pick-ups from one cluster to two destination

REFERENCES
[1] G. Eason, B. Noble, and I. Sneddon, “On certain integrals of Lipschitz-

Hankel type involving products of Bessel functions,” Phil. Trans. Roy.
Soc. London, vol. A247, pp. 529–551, April 1955.

[2] Varrentrapp, K., Maniezzo, V., Stutzle, T.: The Long Term Car Pooling
Problem: On the Soundness of the Problem Formulation and Proof of
NP-completeness. Technische Universitat Darmstadt (2002)

[3] Maniezzo, V., Carbonaro, A., Hildmann, H.: An ANTS heuristic for the
long-term car pooling problem. In: New Optimization Techniques in
Engineering, pp. 411–430 (2004)

[4] Son, Ta Anh, Le Thi Hoai An, Pham Dinh Tao, and Djamel Khadraoui.
"A Distributed Algorithm Solving Multiobjective Dynamic Car Pooling
Problem." Int’l Conf. on Computer & Information Science. 2012.

[5] Sghair, Manel, Hayfa Zgaya, Slim Hammandi, and Christian Tahon. "A
Distributed Dijkstra's Algorithm For The Implementation Of A Real
Time Carpooling Service With An Optimized Aspect On Siblings."
IEEE Annual Conf. on Intelligent Transportation Systems. Madeira
Island, Portugal, 2010.

[6] Guo, Yuhan - Goncalves, Gilles - Hsu, Tienté. A Multi-agent Based Self-
adaptive Genertic Algorithm for the Long-term Car Pooling Problem.
Springer Science Business Media B.V. 2012, 2011.

[7] Guo, Yuhan, Gilles Goncalves, and Tienté Hsu. "A Clustering Ant
Colony Algorithm for the Long-term Car Pooling Problem." Int’l Conf.
on swarm interlligence. Lille, France, 2011.

[8] Yan, Shangyao, Chun-Ying Chen, and Yu-Fang Lin. "A Model With a
Heuristic Algorithm for Solving the Long-term Many-to-Many Car
Pooling Problem." IEEE TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS, 2011.

[9] Baldacci R., Maniezzo V. and Mingozzi A.: An Exact Method for the
Car Pooling Problem Based on Lagrangean Column Generation. Oper.
Res. 52(3) (June 2004) 422-439

[10] Ta Anh Son, Le T hi Hoai An, Gerald Arnould, Djamel Khadraoui and
Pharn Dinh Tao: Solving Car Pooling Problem using DCA, Global
Information Infrastructure Symposium, Danang Aug. 2011, pp.1-6.

[11] Calvo R. W., Luigi F. L., Haastrup P. and Maniezzo V: A distributed
geographic information system for the daily car pooling problem,
Computers and Operations Research, 31 (2004) 2263-2278

[12] E. Ferrari, R. Manzini. The car pooling problem: heuristic algorithms
based on savings functions. Journal of Advanced Transportation,
37(3):243-272, 2003.

[13] Y. Lin. Matching Model and Heuristic Algorithm for Fairness in the Car
pool Problem. PhD Thesis, National Central University, Taiwan, 2009.

[14] Williams, & Fagin. (1983). A Fair Carpool Scheduling Algorithm. IBM
Journal of Research, 133-139.

[15] Google maps api family. (n.d.). Retrieved from h
https://developers.google.com/map

17th IEEE Mediterranean Electrotechnical Conference, Beirut, Lebanon, 13-16 April 2014.

186

