

Ruofan Zhou, Fayez Lahoud, and Sabine Süsstrunk

39.17

37.13

ivrl.epfl.ch

Multi-Modal Spectral Image Super-Resolution

Deep convolutional neural networks are powerful in learning the relation between low- and high-resolution images. However, they typically take a single-scale image as input and require large amounts of data to train. In this work, we use multi-modal inputs, both in spatial and spectral dimensions, to improve spectral super-resolution. Our approach produces state-of-the-art results and is economic in terms of parameters and computation time.

Stage-I	Error-I	Stage-II	Error-II							
					Val	idation Set	Ι	Vali	dation Set	II
Some Siner		CONTRACTOR CONTRACTOR		Metric	Bicubic x2	EDSR	Ours	Bicubic x2	EDSR	Ours
				MRAE	0.11	0.10	0.08	0.13	0.16	0.09
				SID	57.39	43.57	43.48	43.32	30.67	24.51

PSNR

36.07

Multi Modality

We use both spatial and spectral modalities to improve the performance of our super-resolution neural network.

Downscaled x2

Downscaled x3

Spectral Modality

Track 2

Transfer Learning

36.48

Due to the limited amount of available training data in Track2, we use transfer learning to adapt our network from Track1 with a new color modality. In Stage-I, the network learns to super-resolve spectral images. Stage-II uses Stage-I's input and an additional color guide image to fine-tune the super-resolution prediction.

37.44

37.27

14-channel spectral

ixixixixixixi

3-channel RGB

Multi-Scale Upsampling

Using nearest neighbor up-sampling for both x2 and x3 inputs, we reconstruct 1/3 of the original high resolution image, with 2/3 still missing. We reconstruct the missing pixels with the extreme image completion algorithm [1].

It is more robust to train a network using residuals due to the sparser activations. We use the residual architecture to learn the degradation induced by the down-sampling operation.

We compare our up-sampling technique with the typically used bicubic interpolation. We

	Ours	EDSR
Storage (MB)	2.7	153.8

also compare to the state-ofthe art super-resolution network, EDSR [2], both for performance and efficiency.

References

Efficiency comparison								
•	Inference time (sec)	0.5	1.1					
-	Memory (MB)	800	8000					

[1] R. Achanta, N. Arvanitopoulos, and S. Süsstrunk, "Extreme image completion," in the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.
[2] Lim, B., Son, S., Kim, H., Nah, S. and Lee, K.M., "Enhanced Deep Residual Networks for Single Image Super-Resolution," in the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) workshops, 2017.