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Multi-Modal Spectral Image Super-Resolution

Deep convolutional neural networks are powerful In learning the relation between low- and high-resolution images. However, they
typically take a single-scale image as input and require large amounts of data to train. In this work, we use multi-modal inputs, both In
spatial and spectral dimensions, to iImprove spectral super-resolution. Our approach produces state-of-the-art results and Is economic In

terms of parameters and computation time.
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Multi Modality

We use both spatial and spectral modalities to Improve the

performance of our super-resolution neural network.
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Multi-Scale Upsampling
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Reconstruction

High Resolution Image

Using nearest neighbor up-sampling for both x2 and x3 inputs, we
reconstruct 1/3 of the original high resolution image, with 2/3 still
missing. We reconstruct the missing pixels with the extreme
Image completion algorithm [1].
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Metric | Bicubicx2 EDSR ours Bicubic x2 EDSR Qurs
MRAE 0.11 0.10 0.08 0.13 0.16 0.09
SID 57.39 43.57 43.48 43.32 30.67 24.51
PSNR 36.07 37.27 37.44 36.48 37.13 39.17
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Transfer Learning

Due to the limited amount of available training data in Track2, we
use transfer learning to adapt our network from Trackl with a new
color modality. In Stage-l1, the network learns to super-resolve
spectral 1mages. Stage-1l1 uses Stage-I’s Input and an additional
color guide Image to fine-tune the super-resolution prediction.
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It 1S more robust to train a network using residuals due to the
sparser activations. We use the residual architecture to learn the
degradation induced by the down-sampling operation.
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We compare our up-sampling ours EDSR
technigue with the typically

used bicubic interpolation. We | >torage (MB) 2.1 153.8

also compare to the state-of- | yemory (MB) 300 8000

the art  super-resolution

network, EDSR [2], both for |Inferencetime (sec) | 0.5 1.1

performance and efficiency. Efficiency comparison
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